Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1335-1346    DOI: 10.3724/SP.J.1037.2010.00433
  综述 本期目录 | 过刊浏览 |
抗氢脆奥氏体钢及抗氢铝
李依依, 范存淦, 戎利建, 闫德胜, 李秀艳
中国科学院金属研究所, 沈阳 110016
HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS
LI Yiyi, FAN Cungan, RONG Lijian, YAN Desheng, LI Xiuyan
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李依依 范存淦 戎利建 闫德胜 李秀艳. 抗氢脆奥氏体钢及抗氢铝[J]. 金属学报, 2010, 46(11): 1335-1346.
, , , . HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. Acta Metall Sin, 2010, 46(11): 1335-1346.

全文: PDF(1076 KB)  
摘要: 氢脆是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象. 常用的抗氢合金有奥氏体不锈钢、沉淀强化奥氏体合金、低合金钢及铝合金等. 由于奥氏体基体具有良好的抗氢脆性能, 并且奥氏体合金可以通过沉淀强化提高其强度, 因此这种合金作为结构件在氢环境下被广泛应用. 中国科学院金属研究所开发了系列抗氢合金HR-1, HR-2, HR-3, J75和J100以及Al-6Mg-0.2Sc-0.15Zr抗氢铝合金, 这些合金具有高的综合力学性能和抗氢性能. 此外, 合金的冶炼、铸、锻、焊、热处理都遵循各自的制备规律, 严格控制其组织结构以达到提高抗氢损伤等性能的目的.
关键词 抗氢脆奥氏体合金 低合金钢Al-Mg-Sc-Zr合金锻造变形量    
Abstract:Hydrogen embrittlement is of the technological importance in which the hydrogen in metallic materials can cause the loss in tensile ductility, cracking or damage and degradation of other mechanical properties. The common hydrogen resistant alloys are austenitic stainless steels, precipitation-strengthened austenitic alloys, low alloy steels and aluminum alloys etc.. As austenitic alloys have high hydrogen resistance properties and their strength can be improved by precipitation strengthening, they are commonly used in hydrogen conditions. IMR had developed a series hydrogen resistant steels, such as HR-1, HR-2, HR-3, J75 and J100 as well as Al-6Mg-0.2Sc-0.15Zr hydrogen resistant aluminum alloy. These alloys posses comprehensive mechanical properties and high hydrogen resistant ability. In addition, alloy smelting, casting, forging, welding and heat treatment should be followed the laws of the preparation. It is important to control the microstructures in order to improve the performance of resistant hydrogen.
Key wordshydrogen embrittlement    austenitic alloys    low alloy steel    Al-Mg-Sc-Zr alloy    forging deformation
收稿日期: 2010-08-30     
作者简介: 李依依, 女, 1933年生, 研究员, 中国科学院院士
[1] Fan C G, Li Y Y, Zhao X J. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1985 (范存淦, 李依依, 赵学军. 中国科学院金属研究所内部资料, 1985) [2] Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1985 (李依依. 中国科学院金属研究所内部资料, 1985) [3] Xing Z S, Li Y Y, Deng Q Z. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1988 (邢中枢, 李依依, 邓庆洲. 中国科学院金属研究所内部资料, 1988) [4] Coates D J, Mortimer B, Hendry A. Corros Sci, 1982; 22: 951 [5] Briant C L. Hydrogen Assisted Cracking of Austenitic Stainless Steels. Warrendale, PA: AIME, 1981: 527 [6] West A J, Holbrook J H. Hydrogen in Austenitic Stainless Steels: Effects of Phase Transformations and Stress State. Warrendale: AIME, 1981: 607 [7] Aerospace Structural Metals Handbooks. Michigan: Mechanical Properties Data Center, 1975: 1 [8] Schmidt A S, Verfuss F, Wicke E. J Nucl Mater, 1985; 131: 247 [9] Rozenak P, Bergman R. Mater Sci Eng, 2006; A437: 366 [10] Li X Y, Li Y Y. Hydrogen Damage in Austenitic Alloys. Beijing: Science Press, 2003: 45 (李秀艳, 李依依. 奥氏体合金的氢损伤. 北京: 科学出版社, 2003: 45) [11] Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1995 (李依依. 中国科学院金属研究所内部资料, 1995) [12] Hicks P, Altstetter C. Mater Trans, 1992; 23A: 237 [13] Thompson A W, Brooks J A. Metall Mater Trans, 1975; 6: 1431 [14] Thompson A W. Metall Mater Trans, 1976; 7A: 315 [15] Rhodes C, Thompson A. Metall Mater Trans, 1977; 8A: 949 [16] Chu W Y. Hydrogen Damage and Delayed Fracture. Beijing: Metallurgical Industry Press, 1988: 10 (褚武杨. 氢损伤和滞后断裂. 北京: 冶金工业出版社, 1988: 10) [17] Li Y Y, Wang A C, Yang K. Trans Mat Res Soc Jpn, 1993; 18: 545 [18] Li X Y, Ma L M, Li Y Y. Acta Metall Sin, 2002; 38: 593 (李秀艳, 马禄铭, 李依依. 金属学报, 2002; 38: 593) [19] Wang A C, Li Y Y, Deng W, Fan C G, Li D F, Yang K, Shi C X. Chin J Mater Res, 1995; 9: 1 (王安川, 李依依, 邓 文, 范存淦, 李冬法, 杨柯, 师昌绪. 材料研究学报, 1995; 9: 1) [20] Wang A C, Fan C G, Yang K, Li Y Y. Inside Information of Institute of Metal Research, Chinese Academy of Sciences, 1993 (王安川, 范存淦, 杨柯, 李依依. 中国科学院金属研究所内部资料, 1993) [21] Liu S, Zheng H, Gui Q H, Ma A H, Yu H B, Wang L B, Yang H G. Acta Metall Sin, 2004; 40: 393 (刘 实, 郑 华, 贵全红, 马爱华, 于洪波, 王隆保, 杨洪广. 金属学报, 2004; 40: 393) [22] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469) (张 建, 李秀艳, 戎利建, 郑永男, 朱升云. 金属学报, 2006; 42: 469) [23] San–Martin A, Manchester F D. The Al–H System Phase Diagram Evaluations. Section 2, 1992: 17 [24] Zhao W T, Yan D S, Rong L J. Acta Metall Sin, 2005; 41: 1150 (赵卫涛, 闫德胜, 戎利建. 金属学报, 2005; 41: 1150) [25] Du G, Deng J W, Wang Y L, Yan D S, Rong L J. Scr Mater, 2009; 61: 532 [26] Du G, Deng J W, Yan D S, Zhao M J, Rong L J. J Mater Sci Technol, 2009; 25: 749 [27] Du G, Yan D S, Rong L J. Acta Metall Sin, 2008; 44: 1209 (杜刚, 闫德胜, 戎利建. 金属学报, 2008; 44: 1209) [28] Harada Y, Dunand D C. Scr Mater, 2003; 48: 219 [29] Ferreira P J, Robertson I M, Birnbaum H K. Acta Mater, 1998; 46: 1749 [30] Tomota Y, Xia Y, Inoue K. Acta Mater, 1998; 46: 1577 [31] Ferreira P J, Robertson I M, Birnbaum H K. Acta Mater, 1999; 47: 2991 [32] Bampton C C, Jones I P, Loretto M H. Acta Metall, 1978; 26: 39 [33] Schulthess T C, Turchi P E A, Gonis A, Nieh T G. Acta Mater, 1998; 46: 2215 [34] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983 [35] Zhang J, Li X Y, Rong L J. Acta Metall Sin, 2006; 42: 469 (张 建, 李秀艳, 戎利建. 金属学报, 2006; 42: 469) [36] Harada Y, Dunand D C. Intermetallics, 2009; 17: 17 [37] http://www.lm.gov.cn/gb/training/2005–11/11/content 90745.htm [38] Zhang J, Li X Y, Rong L J, Liao B, Fan Y, Tan Y, Mei J. Chin J Mater Res, 2007; 21: 459 (张 建, 李秀艳, 戎利建, 廖 彬, 范英, 谭 云, 梅军. 材料研究学报, 2007; 21: 459) [39] Lu S P, Dong W C, Li D Z, Li Y Y. Compt Mater Sci, 2009; 45: 327 [40] Li D J, Lu S P, Li D Z, Li Y Y. Adv Mater Res, 2010; 97–101: 3978
[1] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[2] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[3] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[4] 刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[5] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[6] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[7] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[8] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[9] 徐秋发, 庞晓露, 刘泉林, 高克玮. 低合金钢和碳钢在90 ℃地下水模拟溶液中的缝隙腐蚀*[J]. 金属学报, 2014, 50(6): 659-666.
[10] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
[11] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[12] 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究------进展与趋势[J]. 金属学报, 2011, 47(7): 769-776.
[13] 刘杰 李相波 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响[J]. 金属学报, 2011, 47(6): 697-705.
[14] 杜刚 杨文 闫德胜 戎利建. 铸态Al-Mg-Sc-Zr合金退火过程中的硬化行为[J]. 金属学报, 2011, 47(3): 311-316.
[15] 于全成 王振尧 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46(9): 1133-1140.