Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1306-1314    DOI: 10.11900/0412.1961.2015.00057
  本期目录 | 过刊浏览 |
ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*
张盛华,王培(),李殿中,李依依
INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION
Shenghua ZHANG,Pei WANG(),Dianzhong LI,Yiyi LI
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.
Shenghua ZHANG, Pei WANG, Dianzhong LI, Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. Acta Metall Sin, 2015, 51(11): 1306-1314.

全文: PDF(847 KB)   HTML
摘要: 

利用自制的小型拉伸装置对淬火+回火热处理后的ZG06Cr13Ni4Mo马氏体不锈钢试样进行单轴拉伸变形, 使用同步辐射高能X射线衍射技术对钢中逆变奥氏体力学稳定性和相变诱导塑性(transformation induced plastic, TRIP)进行原位研究. 结果表明, 随着拉伸应力的增加, 逆变奥氏体衍射峰积分强度逐渐减弱, 逆变奥氏体在变形过程中逐步发生了形变诱导马氏体相变. 利用Rietveld全谱精修拟合方法对不同应力状态下的逆变奥氏体相分数进行定量分析, 发现逆变奥氏体的形变诱导马氏体相变开始于材料的宏观弹性阶段, 并持续至整个塑性变形阶段. 通过比较分析不同热处理工艺下逆变奥氏体的形变诱导相变过程和材料的加工硬化行为发现, 逆变奥氏体的形变诱导相变的出现增加了马氏体基体的位错密度, 导致材料加工硬化指数的提高, 有效提高了材料的塑性.

关键词 马氏体不锈钢同步辐射高能X射线逆变奥氏体力学稳定性相变诱导塑性加工硬化指数    
Abstract

After quenching and proper intercritical tempering, ZG06Cr13Ni4Mo martensitic stainless steel is composed of tempered martensite matrix and reversed austenite. The deformation induced martensitic transformation of reversed austenite occurring during the deformation results in the transformation induced plasticity (TRIP) effect, which is beneficial to the mechanical properties of this steel. However, studies on the TRIP effect of reversed austenite are limited to description of phenomenon and mechanism behind is not clear. In order to reveal the mechanical stability and transformation induced plasticity of the reversed austenite during tension test in tempered ZG06Cr13Ni4Mo steel, a custom-built mini tensile instrument has been designed and installed on Shanghai Synchrotron Radiation Facility to conduct the in situ synchrotron high energy X-ray diffraction (SHXRD) experiment during the uniaxial tension. Three samples, which were tempered at 620 ℃ with different holding times and cooling rates in order to obtain different volume fraction of reversed austenite, were used to investigate the relationship between the deformation induced martensitic transformation and work hardening behavior. The integral intensity and the full width at half maximum of diffraction peaks of the reversed austenite and tempered martensitic matrix under different engineering stress were recorded. The gradual decrease in the integral diffraction intensity of reversed austenite with increase in tensile stress indicates that the reversed austenite has been induced to transform into martensite during the tension deformation. Furthermore, the volume fraction of reversed austenite during tension was quantitatively calculated by fitting the whole diffraction spectra of reversed austenite and tempered martensitic matrix with the Rietveld refinement method. The evolution of the reversed austenite fraction indicates that the deformation induced martensitic transformation initiates at the macro-elastic stage and through the whole deformation, which is different to the retained austenite in TRIP steel. Meanwhile, the work hardening exponents of three samples with different volume fraction of reversed austenite have been compared. It is found that the deformation induced martensitic transformation of reversed austenite increases the dislocation density of martensitic matrix and results in the increase in the work-hardening exponent during the plastic deformation, which enhances the ductility of ZG06Cr13Ni4Mo martensitic stainless steel.

Key wordsmartensitic stainless steel    synchrotron high energy X-ray diffraction    reversed austenite    mechanical stability    transformation induced plasticity    work-hardening exponent
    
基金资助:*国家自然科学基金资助项目51201167
图1  自制小型拉伸装置部件图
图2  小型拉伸装置在同步辐射衍射仪上的装配图
图3  同步辐射高能X射线衍射原位检测示意图
图4  试样2和3的同步辐射高能XRD谱
图5  试样2中逆变奥氏体各个衍射峰积分强度在不同应力状态下的变化
图6  试样3中逆变奥氏体各个衍射峰积分强度在不同应力状态下的变化
图7  试样2和3在变形中时逆变奥氏体相体积分数变化
图8  单轴拉伸过程中试样2和3中马氏体基体位错密度变化
图9  试样1, 2和3的真应力-应变曲线
图10  试样1, 2和3单轴拉伸变形时的加工硬化指数和奥氏体含量的变化曲线
[1] Friis W L, Noren T M I. US Pat, 3378367, 1968
[2] Bilmes P D, Solari M, Llorente C L. Mater Charact, 2001; 46: 285
[3] Gesnouin C, Hazarabedian A, Bruzzoni P, Ovejero-Garcia J, Bilmes P, Llorente C. Corros Sci, 2004; 46: 1633
[4] Kane R D, Watkins M, Greer J B. Corrosion, 1977; 33: 231
[5] Bilmes P, Llorente C, Ipina J P. J Mater Eng Perform, 2000; 9: 609
[6] Song Y Y, Ping D H, Yin F X, Li X Y, Li Y Y. Mater Sci Eng, 2010; A527: 614
[7] Wang P, Xiao N M, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A586: 292
[8] Offerman S E, Van Dijk N H, Sietsma J, Grigull S, Lauridsen E M, Margulies L, Poulsen H F, Rekveldt M T, Van der Zwaag S. Science, 2002; 298: 1003
[9] Jacques P, Furnemont Q, Lani F, Pardoen T, Delannay F. Acta Mater, 2007; 55: 3681
[10] Lani F, Furnemont Q, Van Rompaey T, Delannay F, Jacques P J,Pardoen T. Acta Mater, 2007; 55: 3695
[11] Cheng S, Wang Y D, Choo H, Wang X L, Almer J D, Liaw P K, Lee Y K. Acta Mater, 2010; 58: 2419
[12] Blonde R, Jimenez-Melero E, Zhao L, Wright J P, Bruck E, Van der Zwaag S, Van Dijk N H. Acta Mater, 2012; 60: 565
[13] Choi K S, Liu W N, Sun X, Khaleel M A, Ren Y, Wang Y D. Metall Mater Trans, 2008; 39A: 3089
[14] Zhang S H, Wang P, Li D Z, Li Y Y. Mater Des, 2015; 84: 385
[15] Rietveld H M. Acta Cryst, 1967; 22: 151
[16] Jia N, Cong Z H, Sun X, Cheng S, Nie Z H, Ren Y, Liaw P K, Wang Y D. Acta Mater, 2009; 57: 3965
[17] Prince E. In: Young R A ed., The Rietveld Method. Oxford: Oxford University Press, 1993: 1
[18] Lutterotti L. MAUD. Version 2.038, Department of Materials Engineering, Engineering Faculty University of Trento, 2006
[19] Tomota Y, Tokuda H, Adachi Y, Wakita M, Minakawa N, Moriai A, Morii Y. Acta Mater, 2004; 52: 5737
[20] Timokhina I B, Hodgson P D, Pereloma E V. Metall Mater Trans, 2003; 34A: 1599
[21] Wang P, Lu S P, Li D Z, Kang X H, Li Y Y. Acta Metall Sin, 2008; 44: 681 (王 培, 陆善平, 李殿中, 康秀红, 李依依. 金属学报, 2008; 44: 681)
[22] Dunn C G, Koch E F. Acta Mater, 1957; 5: 548
[23] Jacques P, Furnemont Q, Pardoen T, Delannay F. Acta Mater, 2001; 49: 139
[24] Rizk A, Bourell D L. Scr Met, 1982; 16: 1321
[25] Sangal S, Goel N C, Tangri K. Metall Mater Trans, 1985; 16A: 2023
[1] 刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
[2] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[3] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[4] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[5] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[6] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[7] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[8] 任勇强,谢振家,张宏伟,袁胜福,宋婷婷,尚成嘉. 前躯体组织对C—Mn—Si钢组织特征及力学行为的影响[J]. 金属学报, 2013, 49(12): 1558-1566.
[9] 陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.
[10] 雷明凯 王克胜 欧伊翔 张磊. 泵阀用2Cr13马氏体不锈钢等离子体基低能氮离子注入研究[J]. 金属学报, 2011, 47(12): 1490-1494.
[11] 王书晗 刘振宇 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45(9): 1083-1090.
[12] 王培; 陆善平; 李殿中; 康秀红; 李依依 . 低加热速率下ZG06Cr13Ni4Mo低碳马氏体不锈钢回火过程的相变研究[J]. 金属学报, 2008, 44(6): 681-685 .
[13] 刘江涛 王中光 尚建库. [110]和[112]取向β-Sn单晶体的形变行为[J]. 金属学报, 2008, 44(12): 1409-1414.
[14] 马素媛; 陈瑞; 贺笑春; 李家宝; 郝学卓 . 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41(1): 28-.
[15] 邢献然;乔芝郁;魏寿昆. Sm_(1+x)Ba_(2-x)Cu_3O_y(0≤x≤0.4)的热力学稳定性[J]. 金属学报, 1996, 32(2): 144-148.