Please wait a minute...
金属学报  2011, Vol. 47 Issue (4): 423-428    DOI: 10.3724/SP.J.1037.2010.00537
  论文 本期目录 | 过刊浏览 |
1500 MPa级高强度钢42CrMoVNb的氢吸附行为
李阳, 张永健, 惠卫军, 王毛球, 董瀚
钢铁研究总院先进钢铁材料技术国家工程研究中心, 北京 100081
HYDROGEN ABSORPTION BEHAVIOR OF 1500 MPa--GRADE HIGH STRENGTH STEEL 42CrMoVNb
LI Yang, ZHANG Yongjian, HUI Weijun, WANG Maoqiu, DONG Han
National Engineering Research Center of Advanced Steel Technology, Central Iron and Steel Research Institute, Beijing 100081
引用本文:

李阳 张永健 惠卫军 王毛球 董瀚. 1500 MPa级高强度钢42CrMoVNb的氢吸附行为[J]. 金属学报, 2011, 47(4): 423-428.
, , , , . HYDROGEN ABSORPTION BEHAVIOR OF 1500 MPa--GRADE HIGH STRENGTH STEEL 42CrMoVNb[J]. Acta Metall Sin, 2011, 47(4): 423-428.

全文: PDF(844 KB)  
摘要: 采用阴极充H和H热分析等实验方法, 研究了新开发的1500 MPa级高强度钢 42CrMoVNb在不同奥氏体化温度淬火和不同温度回火后的H吸附行为, 并与常用钢42CrMo进行了对比. 结果表明, 在淬火态及不同温度回火处理后, 42CrMoVNb钢充H试样的H逸出曲线峰值温度$\theta_{\rm p}$在200---250 ℃之间. 回火温度从200 ℃升高到500 ℃时, 充H试样的H含量缓慢增加; 当回火温度升高到 500 ℃以上时, 充H试样的H含量急剧增加, 并且在600 ℃附近达到最高值 6.6×10-6左右, 该H含量约为淬火态时的5倍; 继续提高回火温度, 则H含量又急剧下降. 在不同奥氏体化温度(850-1100 ℃)加热淬火, 经400 ℃回火时, 没有细小弥散的(V, X)C碳化物析出, 因而充H试样的H含量随奥氏体化温度升高的变化不明显; 而在有细小(V, X)C析出的峰值温度600 ℃回火时, H含量则随奥氏体化温度的升高而明显增加. 这表明, 细小弥散的(V, X)C碳化物可作为H陷阱而吸附大量的H. 通过改变升温速率测定(V, X)C析出相的H陷阱激活能Ea=28.7 kJ/mol.
关键词 42CrMoVNb高强度钢氢陷阱热分析碳化物热处理    
Abstract:Hydrogen absorption behaviors of a newly developed 1500 MPa-grade high strength steel 42CrMoVNb at different austenitizing temperatures and tempering temperatures were studied using cathodic charging and hydrogen thermal desorption analysis, which were also compared with commercial structural steel 42CrMo. The results show that the hydrogen escape peak temperatures (θp) in hydrogen evolution curves of hydrogen charged 42CrMoVNb specimens are between 200 ℃ to 300 ℃ both at as-quenched condition and as-tempered condition. The absorbed hydrogen content of 42CrMoVNb specimen increases slowly with increasing tempering temperature up to 500 ℃. When the tempering temperature exceeded 500 ℃, the absorbed hydrogen content increases sharply and reaches its peak, 6.6×10-6, for the specimen tempered at 600 ℃, which is 5 times as much as that of the as-quenched specimen. Thereafter the absorbed hydrogen content declines sharply as the tempering temperature was gone up sequentially. When the specimen was tempered at 400 ℃, the absorbed hydrogen content decreases slightly with austenitizing temperature increasing, and in the microstructure no fine dispersed (V, X)C carbide precipitated, while when the specimen was tempered at 600 ℃, the absorbed hydrogen content increases sharply with austenitizing temperature increasing, and more fine dispersed (V, X)C precipitated. These results indicate that fine dispersed (V, X)C precipitate could  be regarded as a strong hydrogen trap, and the trap activation energy, Ea, is equal to about\linebreak 28.7 kJ/mol, which was obtained by change heating rate.
Key words42CrMoVNb high strength steel    hydrogen trap    thermal desorption analysis    carbide    heat treatment
收稿日期: 2010-10-11     
ZTFLH: 

TG111

 
基金资助:

国家高技术研究发展计划项目2009AA033401及国家科技支撑计划项目2007BAE51B03资助

作者简介: 李阳, 男, 1985年生, 硕士生
[1] Chu W Y. Hydrogen Damage and Delayed fracture. Beijing: Metallurgy Industry Press, 1988: 86 p

(褚武扬. 氢损伤与滞后断裂. 北京: 冶金工业出版社, 1988: 86)

[2] Shinsaku M. Delayed Fracture. Tokyo: Nikkan Kogyo Shimbun, 1989: 192

(松山晋作. 迟れ破坏. 东京: 日刊工业新闻社, 1989: 192)

[3] Hui W J, Dong H, Weng Y Q. Iron Steel, 2001; 36(3): 69

(惠卫军, 董 瀚, 翁宇庆. 钢铁, 2001; 36(3): 69)

[4] Hasegawa T, Nakahara T, Yamada Y, Nakamura M. Wire J Int, 1992; (8): 49

[5] Kushida T, Matsumoto H, Kuratomi N, Tsumura T, Nakasato F, Kudo T. Tetsu Hagane, 1996; 82: 297

(栉田隆弘, 松本 \ 齐, 仓富直行, 津村辉隆, 中里福和, 工\parbox[t]{0.26cm}{\vspace*{-6.2pt}\hspace*{-1.2pt}

\includegraphics[width=0.23cm]{teng.eps}}\hspace*{0.2pt}赳夫. 铁と钢, 1996; 82: 297)

[6] Takehiro T, Toru H, Kaneaki T. Tetsu Hagane, 2002; 88: 771

(土田武広, 原彻, 津崎蒹彰. 铁と钢, 2002; 88: 771)

[7] Hui W J, Dong H, Weng Y Q. J Iron Steel Res Int, 2003; 10(4): 63

[8] Hui W J, Dong H, Weng Y Q, Shi J. J Iron Steel Res Int, 2005; 12: 43

[9] Hui W J, Dong H, Weng Y Q, Chen S L, Wang M Q. J Iron Steel Res Int, 2002; 9: 40

[10] Qi J Y, Li Y J, Zhou H J. Trans Mater Heat Treat, 1984; (1): 4

(齐靖远, 黎永均, 周惠久. 材料热处理学报, 1984; (1): 4)

[11] Hui W J, Dong H, Weng Y Q, Shi J, Zhang X Z. Acta Metall Sin, 2004; 40: 1274

(惠卫军, 董瀚, 翁宇庆, 时捷, 章晓中. 金属学报, 2004; 40: 1274)

[12] Li G F, Wu R G, Lei T C. Metall Trans, 1992; 23A: 2879

[13] Hui W J, Weng Y Q, Dong H. High Strength Steels for Fasteners. Beijing: Metallurgical Industry Press, 2009: 124

(惠卫军, 翁宇庆, 董瀚. 高强度紧固件用钢. 北京: 冶金工业出版社, 2009: 124)

[14] Llewellyn D T. Ironmak Steelmak, 1996; 23: 397

[15] Yao D Q, Hu Z Q, Shi C X. Mater Mech Eng, 1989; (1): 1

(姚大千, 胡壮麒, 师昌绪. 机械工程材料, 1989; (1): 1)

[16] Choo W Y, Lee J Y. Metall Trans, 1982; 13A: 135

[17] Choo W Y, Lee J Y. J Mater Sci, 1982; 17: 1930
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[12] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.