Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 777-786    DOI: 10.3724/SP.J.1037.2013.00747
  论文 本期目录 | 过刊浏览 |
G18CrMo2-6钢回火组织及冲击韧性研究*
李振江1), 肖纳敏1), 李殿中1), 张俊勇2), 罗永建2), 张瑞雪2)
1) 中国科学院金属研究所沈阳材料科学国家 (联合) 实验室, 沈阳 110016
2) 共享集团有限责任公司, 银川 750021
INFLUENCE OF MICROSTRUCTURE ON IMPACT TOUGHNESS OF G18CrMo2-6 STEEL DURING TEMPERING
LI Zhenjiang 1), XIAO Namin 1), LI Dianzhong 1), ZHANG Junyong 2), LUO Yongjian 2), ZHANG Ruixue 2)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of
Sciences, Shenyang 110016
2) KOCEL Group Co., Ltd., Yinchuan 750021
全文: PDF(9571 KB)   HTML
摘要: 

以核电汽轮机缸体用G18CrMo2-6耐热钢为研究对象, 分析了显微组织、第二相类型、形貌、尺寸和分布随回火温度的变化及其对冲击韧性的影响. 结果表明, G18CrMo2-6钢正火经不同冷速冷却后得到不同的基体组织, 经680 ℃回火后, 冲击韧性均远高于指标要求, 因此基体组织差异不是导致冲击韧性急剧恶化的决定性因素. 经炉冷正火后在560~710 ℃区间回火, 显微组织均为铁素体+回火贝氏体, 随回火温度上升, 室温冲击韧性增加. 经560和600 ℃回火后, 块状马氏体/奥氏体(M/A)岛、条状颗粒不均匀分布于贝氏体铁素体基体上, 平均冲击韧性分别为17和29 J. 710 ℃回火后块状M/A岛分解, 条状颗粒转变为细小的颗粒状呈弥散分布, 冲击韧性达到峰值93 J. 除了基体组织的软化效应外, 第二相的类型、形貌、尺寸和分布能够明显改变诱发裂纹萌生的临界断裂应力, 是影响G18CrMo2-6钢冲击性能的一个关键因素.

关键词 G18CrMo2-6钢回火温度冲击韧性碳化物    
Abstract:Low alloy CrMo steels are widely used for high temperature applications in the power and petrochemical industries as structural materials. The most crucial mechanical properties for these steels are sufficient strength to withstand internal pressure and high impact toughness to assure safety from momentary shock owing to unexpected accidents. Particularly, impact toughness deteriorates because of continuous high temperature during the operation of a high pressure vessel and embrittlement can occur. Thus, the use of steels with high impact toughness is extremely important to guarantee sufficiently the safe operation of the nuclear reactor. Usually low alloy CrMo steels enter service after the normalized and tempered treatment or annealed treatment with a mixed ferrite-bainite or full bainite microstructure. The G18CrMo2-6 steel is one of the most popular materials with the mixed microstructures of ferrite and bainite for the pressure vessel in nuclear industry due to its good impact toughness, high strength and good creep resistance. In this work, the influence of microstructures, including the parent phases and precipitates, on the impact toughness is investigated in detail. The experimental results show that the constituent of the parent phases, namely the ferrite, pearlite or bainite, is not the reason resulting in the ultra-low impact energy. The microstructure characterization implies that the morphology and the distribution of precipitates play the key role in controlling the impact toughness of the G18CrMo2-6 steel. The lower tempering temperatures result in the blocky martensite/austenite (M/A) island and lathy M3C carbides with the large particle size. The finely granular M3C carbides with the uniform distribution on the bainite matrix can be found at the higher tempering temperatures. As the tempering temperature increased, the Charpy absorbed energy at room temperature increased. After the tempering below 600 ℃, Charpy absorbed energy has the ultra-low value of 17 and 29 J. Generally speaking, the weak softening of matrix during the lower tempering temperature increases the accumulative residual stress at particle-ferrite interface. The other important factor should be attributed that the blocky M/A island and lathy M3C carbides result in the lower critical fracture stress of a particle-ferrite interface.
Key wordsG18CrMo2-6 steel    tempering temperature    Charpy absorbed energy    carbide
收稿日期: 2013-11-19     
ZTFLH:  TG161  
基金资助:* 中国科学院院地合作资助项目ZKYYC 201206
Corresponding author: XIAO Namin, associate professor, Tel: (024)23970106, E-mail: nmxiao@imr.ac.cn   
作者简介: 李振江, 男, 1985年生, 博士生

引用本文:

李振江, 肖纳敏, 李殿中, 张俊勇, 罗永建, 张瑞雪. G18CrMo2-6钢回火组织及冲击韧性研究*[J]. 金属学报, 2014, 50(7): 777-786.
LI Zhenjiang, XIAO Namin, LI Dianzhong, ZHANG Junyong, LUO Yongjian, ZHANG Ruixue. INFLUENCE OF MICROSTRUCTURE ON IMPACT TOUGHNESS OF G18CrMo2-6 STEEL DURING TEMPERING. Acta Metall Sin, 2014, 50(7): 777-786.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00747      或      https://www.ams.org.cn/CN/Y2014/V50/I7/777

[1] Li Y L, Zhang H Q, Peng B C, Li J F. Pressure Vessel Technol, 2010; 27: 210
(李云良, 张汉谦, 彭碧草, 李金富. 压力容器, 2010; 27: 210)
[2] Im Y R, Jun O Y, Lee B J. J Nucl Mater, 2001; 297: 138
[3] Gurovich B A, Kuleshova E A, Shtrombakh Y I, Zabusov O O, Krasikov E A. J Nucl Mater, 2000; 279: 259
[4] Shen D D, Song S H, Yuan Z X, Weng Q L. Mater Sci Eng, 2005; A394: 53
[5] Sun S W, Mao J F, Lei T Q, He L L. Acta Metall Sin, 2000; 36: 1009
(孙树文, 茅建富, 雷廷权, 贺连龙. 金属学报, 2000; 36: 1009)
[6] Tao P, Zhang C, Yang Z G. Acta Metall Sin, 2009; 45: 51
(陶 鹏, 张 弛, 杨志刚. 金属学报, 2009; 45: 51)
[7] Luo Y, Peng J M, Wang H B, Wu X C. Mater Sci Eng, 2010; A527: 3433
[8] Dzioba I, Gajewski M, Neimitz A. Int J Pressure Vessel Pipe, 2010; 87: 575
[9] Narstr?m T, Isacsson M. Mater Sci Eng, 1999; A271: 224
[10] Tanguy B, Besson J, Piques R, Pineau A. Eng Fract Mech, 2005; 72: 4
[11] Hwang B, Lee C G. Mater Sci Eng, 2010; A527: 4341
[12] Hu G L, Liu Z T, Wang P, Hua W J, Kang M K. Acta Metall Sin, 1989; 25: 110
(胡光立, 刘正堂, 王 平, 华文君, 康沫狂. 金属学报, 1989; 25: 110)
[13] Wan D C, Yu W, Li X L, Zhang J, Wu H B, Cai Q W. Acta Metall Sin, 2012; 48: 455
(万德成, 余 伟, 李晓林, 张 杰, 武会宾, 蔡庆伍. 金属学报, 2012; 48: 455)
[14] Yang H, Kim S. Mater Sci Eng, 2001; A319: 316
[15] Fujita N, Bhadeshia H. ISIJ Int, 2002; 42: 760
[16] Kozeschnik E, Svoboda J, Fratzl P, Fischer F D. Mater Sci Eng, 2004; A385: 157
[17] Bhadeshia H K D H. In: Chandra T, Torralba J M, Sakai T eds., Proc 4th Int Conf on Processing and Manufacturing of Advanced Materials. Switzerland: Trans Tech Publ, 2003: 35
[18] Chattopadhyay S, Sellars C. Acta Metall, 1982; 30: 157
[19] Tian Y L, Kraft R W. Metall Trans, 1987; 18A: 1403
[20] Gür C, Y?ld?z ?. Mater Sci Eng, 2004; A382: 395
[21] Tezuka H, Sakurai T. Int J Pressure Vessel Pipe, 2005; 82: 165
[22] Guan K, Xu X, Xu H, Wang Z. Nucl Eng Des, 2005; 235: 2485
[23] Briant C. Mater Sci Technol, 1989; 5: 138
[24] Michaud P, Delagnes D, Lamesle P, Mathon M H. Acta Mater, 2007; 25: 4877
[25] Cui Z Q, Tan Y C. Metallographic and Thermal Treatment. 2nd Ed., Beijing: China Machine Press, 2007: 261
(崔忠圻, 覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版社, 2007: 261)
[26] Li Y, Baker T. Mater Sci Technol-Lond, 2010; 26: 1029
[1] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[2] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[3] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[4] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[5] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[6] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[7] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[8] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[9] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[10] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[11] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[12] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[13] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.