Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 19-24    DOI: 10.3724/SP.J.1037.2013.00498
  论文 本期目录 | 过刊浏览 |
热处理对一种高强Zr-Ti合金组织和力学性能的影响*
李烨(), 张龙, 朱正旺, 李宏, 王爱民, 张海峰
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH Zr-Ti ALLOY
LI Ye(), ZHANG Long, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
Ye LI, Long ZHANG, Zhengwang ZHU, Hong LI, Aimin WANG, Haifeng ZHANG. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH Zr-Ti ALLOY[J]. Acta Metall Sin, 2014, 50(1): 19-24.

全文: PDF(5772 KB)   HTML
摘要: 

研究了热处理对高强Zr47Ti45Al5V3 (质量分数, %)合金微观组织和力学性能的影响. 结果表明, 该合金初始加工态由α (hcp)和β (bcc) 2相组成, 板条状的α相均匀分布在β相基体上. 合金虽然具有很高的强度, 但塑性很小, 其抗拉强度为1648 MPa, 而其延伸率只有0.8%. DSC结果表明, 合金在560~750 ℃之间有αβ的相转变. 对热处理后样品的力学性能检测结果表明, 合金中β相含量的增多, 使其塑性提高, 但强度有所降低; 通过在αβ相变点上不同温度的退火处理, 调控αβ相的相对含量可以获得强度和塑性的良好配合. 当合金中β相的体积分数为60%左右时, 合金具有较佳综合力学性能, 其抗拉强度为1398 MPa, 延伸率达到3.1%.

关键词 锆合金力学性能相变塑性变形    
Abstract

Due to the high stress, relative low density and excellent resistance of radiation, Zr-based alloys have become promising structural materials used in the space environment. The relationship between microstructure and mechanical properties is the key issue for designing Zr-based alloy in different alloy systems and has attracted extensive research interests. The microstructures could be adjusted by different processes of heat treatment and thus realizing the optimization of mechanical properties. In this work, the initial microstructure and mechanical properties of a high strength Zr47Ti45Al5V3 (mass fraction, %) alloy was investigated. The XRD results reveal that the initial Zr-based alloy is consisted of α (hcp) and β (bcc) phases. Transmission electron microscopy result shows that the lathy α phase homogenously distributed within the β phase matrix. Mechanical tests of this alloy show very high strength but limited plasticity. The tensile strength is 1648 MPa. However, the tensile elongation is only 0.8%. DSC trace indicates that the transition temperature of α phase to β phase is located between 560~750 ℃ that provides the possibility to adjust the microstructures through different processes of heat treatment. In order to optimize the mechanical properties, several different processes of heat treatment were conducted on this Zr-based alloy, and the relative volume fraction of α and β phase is successfully adjusted. According to the mechanical tests, the plasticity becomes larger as the amount of β phase increases with a slight decrease in strength. When the volume fraction of β phase is about 60%, the alloy exhibits the optimal mechanical performance with a tensile strength of 1398 MPa and an elongation of 3.1%.

Key wordsZr alloy    mechanical property    phase transformation    plastic deformation
收稿日期: 2013-08-19     
ZTFLH:  TG146.414  
基金资助:* 国家重点基础研究发展计划资助项目2010CB731602
作者简介: null

李 烨, 男, 1989年生, 硕士生

图1  
图2  
图3  
图4  
Specimen (0002)α (110)β (1010)α (1010)α / (110)β
Original state 368 2139 1837 0.858659
560 ℃ 729 1317 1317 1.105998
570 ℃ 1058 3174 2073 0.653264
590 ℃ 872 7070 2613 0.369646
650 ℃ 0 3657 228 0.062436
800 ℃ 0 2160 0 0
  
图5  
[1] Wang S H, Yang D Z, He S Y, Lv G.Mater Sci Technol, 2004; 6: 579
[1] (王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 6: 579)
[2] Li X, Wang L, Yu X M.Mater Sci Eng, 2013; A33: 2987
[3] Tribble A. The Space Environment-Implications for Spacecraft Design. New Jersey: Princeton University Press, 1995: 1
[4] Lowenstein D I, Rusek A.Ridiat Environ Bioph, 2007; 46: 91
[5] Shilobreeva S N, Kashkarov L L, Barabanenkov M Y, Pustovit A N, Zinenko V I, Agafonov Y A.Dokl Earth Sci, 2006; 411: 9
[6] Qian J,Zhu Y L,Feng Y Y,Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520
[6] (钱 骥,朱毅麟,冯英远,李凡本. 空间技术基础. 北京: 科学出版社, 1986: 520)
[7] Zhao W J, Zhou B X, Miao Z, Peng F, Jiang Y R, Jiang H M, Pang H.Atom Energy Sci Technol, 2005; 39(suppl): 2
[7] (赵文金, 周邦新, 苗 志, 彭 傅, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学与技术, 2005; 39(增刊): 2)
[8] Wicklein M, Ryan S, White D M, Clegg R A.Int J Impact Eng, 2008; 35: 1861
[9] Sakuraba K, Tsuruda Y, Hanada T, Liou J C, Akahoshi Y.Int J Impact Eng, 2008; 35: 1567
[10] Sorensen B R, Kimsey K D, Love B M.Int J Impact Eng, 2008; 35: 1808
[11] Nomura N, Oya K, Tanaka Y, Kondo R, Doi H,TsutsumiY,HanawaT.ActaBiol,2010:6:1033
[12] Hsu H C, Wu S C, Sung Y C, Ho W F.J Alloys Compd, 2009; 488: 279
[13] Dey G K, Banerjee S.Mater Sci Eng, 1985; A73: 187
[14] Lee M H, Kim J H, Choi B K, Jeong Y H.J Alloys Compd, 2007; 428: 99
[15] Dobromyslov A V, Kazantseva N V.Scr Mater, 1997; 37: 615
[16] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P.Mater Sci Eng, 2012; A532: 1
[17] Ho W F, Cheng C H, Chen W K, Wu S C, Lin H C, Hsu H C.J Alloys Compd, 2009; 471: 185
[18] Thibon I, Ansel D, Gloriant T. J Alloys Compd, 2009; 470: 127
[19] Nakasuji K, Okada M.Mater Sci Eng, 1996; A213: 162
[20] Ho W F, Chen W K, Wu S C, Hsu H C.J Mater Sci, 2008; 19: 3179
[21] Sauer C, Luetjering G. J Mater Process Technol, 2001; 117: 311
[22] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P.Mater Sci Eng, 2012; A539: 42
[23] Lu G. Mater Sci Eng, 1998; A243: 32
[24] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F.Acta Metall Sin, 2012; 48: 636
[24] (王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[25] Kim T K, Choi B S, Jeong Y H, Lee D J, Chang M H. J Nucl Mater, 2002; 301: 81
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.