Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 19-24    DOI: 10.3724/SP.J.1037.2013.00498
  论文 本期目录 | 过刊浏览 |
热处理对一种高强Zr-Ti合金组织和力学性能的影响*
李 烨 张 龙 朱正旺 李 宏 王爱民 张海峰
(中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016)
INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH #br#Zr-Ti ALLOY
LI Ye, ZHANG Long, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(5772 KB)   HTML
摘要: 

研究了热处理对高强Zr47Ti45Al5V3 (质量分数, %)合金微观组织和力学性能的影响. 结果表明, 该合金初始加工态由α (hcp)和β (bcc) 2相组成, 板条状的α相均匀分布在β相基体上. 合金虽然具有很高的强度, 但塑性很小, 其抗拉强度为1648 MPa, 而其延伸率只有0.8%. DSC结果表明, 合金在560~750 ℃之间有α→β的相转变. 对热处理后样品的力学性能检测结果表明, 合金中β相含量的增多, 使其塑性提高, 但强度有所降低; 通过在α→β相变点上不同温度的退火处理, 调控α与β相的相对含量可以获得强度和塑性的良好配合. 当合金中β相的体积分数为60%左右时, 合金具有较佳综合力学性能, 其抗拉强度为1398 MPa, 延伸率达到3.1%.

关键词 锆合金力学性能相变塑性变形    
Abstract

Due to the high stress, relative low density and excellent resistance of radiation, Zr-based alloys have become promising structural materials used in the space environment. The relationship between microstructure and mechanical properties is the key issue for designing Zr-based alloy in different alloy systems and has attracted extensive research interests. The microstructures could be adjusted by different processes of heat treatment and thus realizing the optimization of mechanical properties. In this work, the initial microstructure and mechanical properties of a high strength Zr47Ti45Al5V3 (mass fraction, %) alloy was investigated. The XRD results reveal that the initial Zr-based alloy is consisted of α (hcp) and β (bcc) phases. Transmission electron microscopy result shows that the lathy α phase homogenously distributed within the β phase matrix. Mechanical tests of this alloy show very high strength but limited plasticity. The tensile strength is 1648 MPa. However, the tensile elongation is only 0.8%. DSC trace indicates that the transition temperature of α phase to β phase is located between 560~750 ℃ that provides the possibility to adjust the microstructures through different processes of heat treatment. In order to optimize the mechanical properties, several different processes of heat treatment were conducted on this Zr-based alloy, and the relative volume fraction of α and β phase is successfully adjusted. According to the mechanical tests, the plasticity becomes larger as the amount of β phase increases with a slight decrease in strength. When the volume fraction of β phase is about 60%, the alloy exhibits the optimal mechanical performance with a tensile strength of 1398 MPa and an elongation of 3.1%.

Key wordsZr alloy    mechanical property    phase transformation    plastic deformation
收稿日期: 2013-08-19     
ZTFLH:  TG146.414  
基金资助:

* 国家重点基础研究发展计划资助项目2010CB731602

Corresponding author: WANG Aimin, professor, Tel: (024)23971782, E-mail: amwang@imr.ac.cn   
作者简介: 李 烨, 男, 1989年生, 硕士生

引用本文:

李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
LI Ye, ZHANG Long, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A HIGH-STRENGTH #br#Zr-Ti ALLOY. Acta Metall Sin, 2014, 50(1): 19-24.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00498      或      https://www.ams.org.cn/CN/Y2014/V50/I1/19

[1] Wang S H, Yang D Z, He S Y, Lv G. Mater Sci Technol, 2004; 6: 579
(王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 6: 579)
[2] Li X, Wang L, Yu X M. Mater Sci Eng, 2013; A33: 2987
[3] Tribble A. The Space Environment-Implications for Spacecraft Design. New Jersey: Princeton University Press, 1995: 1
[4] Lowenstein D I, Rusek A. Ridiat Environ Bioph, 2007; 46: 91
[5] Shilobreeva S N, Kashkarov L L, Barabanenkov M Y, Pustovit A N, Zinenko V I, Agafonov Y A. Dokl Earth Sci, 2006; 411: 9
[6] Qian J, Zhu Y L, Feng Y Y, Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520
(钱 骥, 朱毅麟, 冯英远, 李凡本. 空间技术基础. 北京: 科学出版社, 1986: 520)
[7] Zhao W J, Zhou B X, Miao Z, Peng F, Jiang Y R, Jiang H M, Pang H. Atom Energy Sci Technol, 2005; 39(suppl): 2
(赵文金, 周邦新, 苗 志, 彭 傅, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学与技术, 2005; 39(增刊): 2)
[8] Wicklein M, Ryan S, White D M, Clegg R A. Int J Impact Eng, 2008; 35: 1861
[9] Sakuraba K, Tsuruda Y, Hanada T, Liou J C, Akahoshi Y. Int J Impact Eng, 2008; 35: 1567
[10] Sorensen B R, Kimsey K D, Love B M. Int J Impact Eng, 2008; 35: 1808
[11] Nomura N, Oya K, Tanaka Y, Kondo R, Doi H, Tsutsumi Y, Hanawa T. Acta Biol, 2010: 6: 1033
[12] Hsu H C, Wu S C, Sung Y C, Ho W F. J Alloys Compd, 2009; 488: 279
[13] Dey G K, Banerjee S. Mater Sci Eng, 1985; A73: 187
[14] Lee M H, Kim J H, Choi B K, Jeong Y H. J Alloys Compd, 2007; 428: 99
[15] Dobromyslov A V, Kazantseva N V. Scr Mater, 1997; 37: 615
[16] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P. Mater Sci Eng, 2012; A532: 1
[17] Ho W F, Cheng C H, Chen W K, Wu S C, Lin H C, Hsu H C. J Alloys Compd, 2009; 471: 185
[18] Thibon I, Ansel D, Gloriant T. J Alloys Compd, 2009; 470: 127
[19] Nakasuji K, Okada M. Mater Sci Eng, 1996; A213: 162
[20] Ho W F, Chen W K, Wu S C, Hsu H C. J Mater Sci, 2008; 19: 3179
[21] Sauer C, Luetjering G. J Mater Process Technol, 2001; 117: 311
[22] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P. Mater Sci Eng, 2012; A539: 42
[23] Lu G. Mater Sci Eng, 1998; A243: 32
[24] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F. Acta Metall Sin, 2012; 48: 636
(王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[25] Kim T K, Choi B S, Jeong Y H, Lee D J, Chang M H. J Nucl Mater, 2002; 301: 81
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.