Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1399-1405    DOI: 10.3724/SP.J.1037.2013.00442
  论文 本期目录 | 过刊浏览 |
喷射成形FGH4095高温合金近等温锻造组织特征及性能
徐轶1),黄鹏1),舒琴1),郭彪1),孙传水1,2)
1) 西南交通大学材料科学与工程学院, 成都 610031
2) 北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURE AND PROPERTY OF ISOTHERMAL FORGED SPRAY FORMING FGH4095 SUPERALLOY
XU Yi1), HUANG Peng1), SHU Qin1), GUO Biao1), SUN Chuanshui1,2)
1) School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031
2) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

徐轶,黄鹏,舒琴,郭彪,孙传水. 喷射成形FGH4095高温合金近等温锻造组织特征及性能[J]. 金属学报, 2013, 49(11): 1399-1405.
XU Yi, HUANG Peng, SHU Qin, GUO Biao, SUN Chuanshui. MICROSTRUCTURE AND PROPERTY OF ISOTHERMAL FORGED SPRAY FORMING FGH4095 SUPERALLOY[J]. Acta Metall Sin, 2013, 49(11): 1399-1405.

全文: PDF(4125 KB)  
摘要: 

在始锻温度1120℃, 终锻温度1050℃的近等温锻造条件下,通过工程应变量75%的变形获得晶粒细小的喷射成形FGH4095高温合金组织.合金经热处理调节晶粒尺寸, 平均晶粒直径约为8 μm,其室温和650℃拉伸强度(σb)分别为1565和1552 MPa,屈服强度(σ0.2)分别达1231和1130 MPa. 利用OM, SEM和TEM对不同状态坯料进行微观组织观察.结果表明, 经较大累积变形量后, 合金组织由尺寸1-3 μm的细小再结晶晶粒和较大尺寸狭长变形晶粒组成,细小再结晶晶粒为后续静态再结晶提供了形核核心, 小角度晶界为静态再结晶提供了晶格畸变能作为驱动力储备.对比沉积态组织, 喷射成形高温合金经锻造后晶界洁净度更高、碳化物破碎、微观孔洞等缺陷更少,细小的三次γ'相弥散分布于基体之中, 具有较好的力学性能.

关键词 喷射成形等温锻造再结晶力学性能    
Abstract

Spray forming is a rapid solidification technology.The metal melts are atomized by inert gas into droplets of 10—100 μm in size, and fly at subsonic speed onto a deposition substrate during the spray forming process. The main features of spray formed material are free from macro-segregation, the well fine grain size and uniform distribution of the strengthening phase, leading to improvement of mechanical property at acceptable costs compared to the conventional techniques. Spray forming is an inexpensive alternative to powder metallurgy (PM) for the production of High-alloyed materials, finer microstructures and better mechanical properties than conventional materials. The spray forming route is trying to manufacture superalloy turbine components in the aerospace field. FGH4095 superalloy is generally used to manufacture powder metallurgy turbine disc for high working temperature of 650℃ in aerospace industries of China. The microstructure features of spray formed FGH4095 superalloy after isothermal forging and heat treatment process are studied in thework. Spray formed FGH4095 superalloy with grain size of 8 μm was prepared by 75% engineering deformation near isothermal forging under beginning temperature 1120℃ and finish temperature 1050℃. The tensile strengths (σb) of isothermal forged FGH4095 superalloy at room temperature and 650℃ reach 1565 and 1552 MPa, respectively, and the yield strengths (σ0.2) at room temperature and 650℃ reach 1231 and 1130 MPa, respectively. Meanwhile, the microstructure evolution was observed by OM, SEM and TEM. The results indicate that alloy microstructure are composed of fine recrystallization grains and larger deformed grains. Fine recrystallization grains  provide nucleation core, and then small—angle grain boundaries provide lattice distortion energy for static recrystallization. Compared with spray formed material, isothermal forged superalloy possesses fine tertiary γ′ phases dispersed in the matrix, cleaner boundary, crushed carbides, and less defects such as micropores, which has better mechanical properties.

Key wordsspray forming    isothermal forging    recrystallization    mechanical property
收稿日期: 2013-07-25     
基金资助:

国家自然科学基金资助项目51301143

作者简介: 徐轶, 男, 1980年生, 讲师, 博士

[1] Cheng X, Dong J X, Zhang M C. World Steel Iron, 2011; 11(5): 43

(程茜, 董建新, 张麦仓. 世界钢铁, 2011; 11(5): 43)
[2] Guo J T, Zhou L Z, Yuan C, Hou J S, Qin X Z. Chin J Nonferrous Met, 2011; 21: 237
(郭建亭, 周兰章, 袁超, 侯介山, 秦学智. 中国有色金属学报, 2011; 21: 237)
[3] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2011; 47: 1129
(肖旋, 许辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)
[4] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581
(姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[5] Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T. Rare Met Mater Eng, 2011; 40: 1966
(吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛. 稀有金属材料与工程, 2011; 40: 1966)
[6] Yuan C, Guo J T, Li G S, Zhou L Z, Ge Y C, Wang W. Chin J Nonferrous Met, 2011; 21: 733
(袁超, 郭建亭, 李谷松, 周兰章, 葛云超, 王巍. 中国有色金属学报, 2011; 21: 733)
[7] Xie X H, Yao Z K, Ning Y Q, Guo H Z, Tao Y, Zhang Y W. Rare Met Mater Eng, 2012; 41: 82
(谢兴华, 姚泽坤, 宁永权, 郭鸿镇, 陶宇, 张义文. 稀有金属材料与工程, 2012; 41: 82)
[8] Barratt M D, Dowson A L, Jacobs M H. Mater Sci Eng, 2004; A384: 69
[9] Alwin S, Volker U, Christoph E, Rainer K, Alfred K, Maria C M, Roland R,Wolfgang S, Domenico S, Dominique V. Mater Sci Eng, 2008; A477: 69
[10] Zhang G Q, Tian S F, Wang W X, Li Z. New Mater Ind, 2009; (11): 16
(张国庆, 田世藩, 汪武祥, 李周. 新材料产业, 2009; (11): 16)
[11] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[12] Fei Y, Zhou X, Shi H S. Mater Charact, 2008; 59: 592
[13] Xiang J Z, Zhang Y, Fan W J, Wang P, He Y D. J Iron Steel Res Int, 2012; 19(2): 28
[14] Rao G A, Satyanarayana D V V. Mater Sci Technol, 2011; 27: 478
[15] Xu W Y, Li Z, Yuan H, Zhang G Q. Rare Met, 2011; 30: 392
[16] Butzer G, Bowen K. Adv Mater Proc, 1998; 153(3): 21
[17] Li Z, Zhang G Q, Tian S F. Acta Metall Sin, 2002; 38: 1186
(李周, 张国庆, 田世藩. 金属学报, 2002; 38: 1186)
[18] Liu N, Li Z, Zhang G Q. Rare Met, 2011; 30: 388
[19] Yuan H, Li Z, Zhang G Q, Xu W Y, Yao R P, Tian S F. J Mater Eng, 2009; (S1): 150
(袁华, 李周, 张国庆, 许文勇, 姚瑞平, 田世藩. 材料工程, 2009; (增刊1): 150)
[20] Guo W M, Wu J T, Zhang F G. J Iron Steel Res Inter, 2006; 13(5): 65
[21] Xie X S, Zhang L N, Zhang M C. 10th International Symposium on Superalloys. Warrendale, PA: 2004, 451
[22] Lu Z Z, Liu C L, Yue Z F. Mater Sci Eng, 2005; A395: 153
[23] Yin F Z, Hu B F, Jin K S, Jia C C. J Mater Eng, 2005; (10): 52
(尹法章, 胡本芙, 金开生, 贾成厂. 材料工程, 2005; (10): 52)
[24] Chen H M, Hu B F, Li H Y. Chin J Nonferrous Met, 2003; 13: 554
(陈焕铭, 胡本芙, 李慧英. 中国有色金属学报, 2003; 13: 554)
[25] Xu Y, Ge C C, Shu Q. J Iron Steel Res Int, 2013; 20(4): 61
[26] Xu Y, Shu Q, Guo B, Sun C S. J Iron Steel Res Int, 2013; 20(7): 59
[27] Guo J T. Superalloy Material Science, Preparation Technology. Beijing: Science Press, 2008: 68
(郭建亭. 高温合金材料学, 制备工艺. 北京: 科学出版社, 2008: 68)
[28] Li H Y, Song X P, Wang Y L. Rare Met Mater Eng, 2009; 38: 64
(李红宇, 宋西平, 王艳丽. 稀有金属材料与工程, 2009; 38: 64)
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.