Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 989-995    DOI: 10.3724/SP.J.1037.2012.00734
  论文 本期目录 | 过刊浏览 |
刻蚀液中HF和H2O2的摩尔分数对Ag辅助化学刻蚀Si形貌的影响
贺春林1),杨雪飞1),马国峰1),王建明1),赵栋梁2),才庆魁1)
1)沈阳大学辽宁省先进材料制备技术重点实验室, 沈阳 110044
2)北京钢铁研究总院功能材料研究所, 北京 100081
EFFECT OF MOLE FRACTION OF HF AND H2O2 ON MORPHOLOGY OF POROUS SILICON FORMED BY Ag ASSISTED CHEMICAL ETCHING
HE Chunlin 1), YANG Xuefei1), MA Guofeng 1), WANG Jianming 1), ZHAO Dongliang2),CAI Qingkui1)
1) Liaoning Provincial Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044
2) Research Institute of Functional Materials, Central Iron & Steel Research Institute, Beijing 100081
引用本文:

贺春林,杨雪飞,马国峰,王建明,赵栋梁,才庆魁. 刻蚀液中HF和H2O2的摩尔分数对Ag辅助化学刻蚀Si形貌的影响[J]. 金属学报, 2013, 49(8): 989-995.
HE Chunlin, YANG Xuefei, MA Guofeng, WANG Jianming, ZHAO Dongliang, CAI Qingkui. EFFECT OF MOLE FRACTION OF HF AND H2O2 ON MORPHOLOGY OF POROUS SILICON FORMED BY Ag ASSISTED CHEMICAL ETCHING[J]. Acta Metall Sin, 2013, 49(8): 989-995.

全文: PDF(2668 KB)  
摘要: 

采用扫描电镜和紫外-可见分光光度计研究了Ag粒子在小团聚条件下辅助化学刻蚀Si过程中,刻蚀剂HF和氧化剂H2O2的体积比对刻蚀孔隙结构和刻蚀速度的影响.结果表明,HF和H2O2的体积比对刻蚀Si中的孔隙生长速度和形貌有明显的影响,HF和H2O2的摩尔分数ρ=[HF]/([HF]+[H2O2])过低或过高均不利于孔隙的生长.当60%<ρ<80%时, Si可获得快速刻蚀, 刻蚀速度为1050—1260 nm/min. 此时,孔隙密度高, 孔径较大且相互连通, 沿垂直Si表面生长.所获得的Si表面对200—1000 nm波段太阳光的平均反射率可降至5.9%.此外, 孔隙生长速度和形貌也与Ag颗粒的尺寸和形态密切相关.

关键词 SiAg辅助化学刻蚀减反射    
Abstract

The research of silicon solar cells mainly focuses on reducing cost and improving conversion efficiency, and one of the effective methods of improving photoelectric conversion efficiency of solar cells is to decrease the reflection of incident sunlight onto the light-receiving surface. The porous Si layer can work for the antireflection of Si surfaces, which can be prepared by noble metal assisted chemical etching. In this work, the effects of HF, H2O2 and their volume ratio on morphology and growth of pores on single-crystalline Si surface by using Ag (with a small cluster) metal assisted etching were investigated in order to produce a highly efficient antireflecting structure. The metal particles were deposited onto Si wafer by electroless deposition from a metal salt solution including HF. The surface and cross-sectional morphologies of the porous Si surfaces were observed with field-emission scanning electron microscope. The reflectivity of the etched Si surface was measured with a UV-Vis spectrophotometer equipped with an integrating sphere accessory. The experimental results show that the growth rate and morphology of the pores formed on the Ag metallized Si surfaces are strongly dependent on the volume ratio of HF and H2O2. It is not beneficial for the pore growth when mole fraction ρ=[HF]/([HF]+[H2O2]) is too low or too high, and the etching goes well only whenρ is between 60%—80%; in this case, the pore growth rate is up to 1050—1260 nm/min, and the pores grow straightly and vertically with a relatively large pore density, pore size and connected pore net. The Si surface exhibits an average reflectivity as little as 5.9% in the wave range of 200—1000 nm, showing that a satisfactory antireflection is obtained. Additionally, the growth rate and morphology of the pores also depend on the size and morphology of catalyst Ag particles.

Key wordsSilicon    Ag assisted chemical etching    antireflection
收稿日期: 2012-12-12     
基金资助:

国家自然科学基金项目51171118,辽宁省自然科学基金项目20212339和沈阳市科技基金项目F10--205-1-60资助

作者简介: 贺春林,男, 1964年生, 教授, 博士

[1]Geng X W, He C L, Xu S C, Li J G, Zhu L J, Zhao L C.Prog Chem, 2012; 24: 1955
(耿学文, 贺春林,徐仕翀, 李俊刚, 朱丽娟, 赵连城.化学进展, 2012; 24:1955)
[2]Li X, Bohn P W. Appl Phys Lett, 2000; 77: 2572
[3]Tsujino K, Matsumura M, Nishimoto Y. Sol Energy Mater Sol Cells, 2006; 90: 100
[4]Yae S, Kawamoto Y, Tanaka H, Fukumuro N, Matsuda H.Electrochem Commun, 2003; 5: 632
[5]Yae S, Tanaka H, Kobayashi T, Fukumuro N, Matsuda H.Phys Status Solidi, 2005; 2C: 3476
[6]Yae S, Kobayashi T, Kawagishi T, Fukumuro N, Matsuda H.Solar Energy, 2006; 80: 701
[7]Koynov S, Brandt M S, Stutzmann M. Appl Phys Lett,2006; 88: 203107
[8]Nishioka K, Horita S, Ohdaira K, Matsumura H. Sol Energy Mater Sol Cells, 2008; 92: 919
[9]Srivastava S K, Kumar D, Singh P K, Kar M, Kumar V, Husain M. Sol Energy Mater Sol Cells, 2010; 94: 1506
[10]Chartier C, Bastide S, Levy-Clement C. Electrochim Acta, 2008; 53: 5509
[11]Huang Z, Geyer N, Werner P, De Boor J, Cosele U.Adv Mater, 2011; 23: 285
[12]Yang X F. Master Thesis, Shenyang University,2013
(杨雪飞.沈阳大学硕士学位论文, 2013)
[13]Tsujino K, Matsumura M. Adv Mater, 2005; 17: 1045
[14]Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, ZhuJ. Adv Funct Mater, 2006; 16: 387
[15]Bamwenda G R, Tsubota S, Nakamura T, Haruta M.Catal Lett, 1997; 44: 83
[16]Kolasinski K W. Current Opinion Solid State Mater Sci, 2005; 9: 73
[17]Tsujino K, Matsumura M, Nishimoto Y. Sol Energy Mater Sol Cells, 2006; 90: 100
[18]Lehmann V. Electrochemistry of Silicon. Weinheim:Wiley-VCH, 2002: 31
[19]Sato N, Sakaguchi K, Yamagata K, Fujiyama Y, Yonehara T. J Electrochem Soc, 1995; 142: 3116
[20]Geyer N, Huang Z, Fuhrmann B, Grimm S, Reiche M, Nguyen-Duc T K, De Boor J, Leipner H S, Werner P, Gosele U.Nano Lett, 2009; 9: 3106
[21]Lee D H, Kim Y, Doerk G S, Labriante I, Maboudian R. J Mater Chem, 2011; 21: 10359
[22]Peng K Q, Lu A J, Zhang R Q, Lee S T. Adv Funct Mater, 2008; 18: 3026
[23]Peng K Q, Fang H, Hu J J, Wu Y, Zhu J, Yan Y J, Lee S.Chem--Eur J, 2006; 12: 7942
[24]Chattopadhyay S, Li X L, Bohn P W. J Appl Phys,2002; 91: 6134
[25]Tsujino K, Matsumura M. Electrochim Acta, 2007;53: 28

[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[8] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[10] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[15] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.