Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 838-844    
  论文 本期目录 | 过刊浏览 |
FGH95粉末镍基合金蠕变期间位错网的形成与分析
谢君1),田素贵1),刘姣1),周晓明2),苏勇1)
1) 沈阳工业大学 材料科学与工程学院, 沈阳 110870
2) 北京航空材料研究院先进高温结构材料国家重点实验室, 北京 100095
FORMATION AND ANALYSIS OF DISLOCATION NETWORK OF FGH95 POWDER METALLURGY Ni-BASED SUPERALLOY DURING CREEP
XIE Jun1), TIAN Sugui1), LIU Jiao1), ZHOU Xiaoming2), SU Yong1)
1) School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2) National Key Laboratory for Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

谢君,田素贵,刘姣,周晓明,苏勇. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838-844.
XIE Jun, TIAN Sugui, LIU Jiao, ZHOU Xiaoming, SU Yong. FORMATION AND ANALYSIS OF DISLOCATION NETWORK OF FGH95 POWDER METALLURGY Ni-BASED SUPERALLOY DURING CREEP[J]. Acta Metall Sin, 2013, 49(7): 838-844.

全文: PDF(5340 KB)  
摘要: 

采用TEM观察和衍衬分析研究了FGH95粉末镍基合金蠕变期间的位错组态.结果表明, 蠕变初期, 1/2<110>位错在γ基体{111}晶面开动, 使位错不断增殖.蠕变稳态阶段, 2组不同Burgers矢量的位错可能滑移至同一晶面并相遇, 反应后形成六角位错网络,或在不同滑移晶面相交, 形成具有四边形特征的位错网络. 位错网的形成可降低位错可动性并抑制位错交滑移,提高合金蠕变抗力. 蠕变后期变形特征是形变位错在γ/γ’界面位错网损坏处切入γ’相,切入γ’相的位错可发生分解, 形成不全位错和层错的位错组态.

关键词 FGH95粉末镍基合金蠕变位错反应位错网衍衬分析    
Abstract

Powder metallurgy Ni-based superalloys are used extensively in hot section of advanced aeroγengines due to their excellent comprehensive properties. During creep,the deformation mechanism of Ni-based superalloy depends on the alloy chemistry,morphology and volume fraction of γ phase and service conditions. Generally, the microstructure of FGH95 Ni-based alloy is closely related to the heat treatment regimes and its creep mechanism and properties are mainly determined by alloy cooling at oil path or molten salt bath. The difference of creep mechanism of molten salt cooling alloy from oil cooling alloy is that the dislocation networks may be formed in the matrix and therefore decrease the steady strain rate during creep to prolong the creep lifetime of the alloy. Unfortunately, the formation mechanism of dislocation networks in FGH95 Ni-based superalloy during creep is still unclear up to now. For this reason, by means of creep property measurement, TEM observation and diffraction contrast analysis, the formation of dislocation networks in FGH95 Ni-based superalloy during creep has been investigated. The results show that the 1/2<110> dislocations are activated on the octahedral slip systems in the γ matrix of the alloy at initial stage of creep and then they continue to multiply through dislocation reaction. When the alloy enters into the steady stage of creep, two sets of slipping dislocations with different Burgers vectors would encounter on the same crystal plane to react and form a hexagonal dislocation network, or two sets of slipping dislocations on different planes would intersect to form a dislocation network with quadrangle cells. Generally speaking, the dislocation network formation can decrease the dislocation mobility and  therefore restrain dislocation cross-slipping to enhance the creep resistance of the alloy. In the later stage of creep, the dislocations pile up near the regions of γ/γ interface and cause stress concentration, so that the deformed dislocations in the matrix shear and enter γ phase through damaged dislocation networks in γ/γ interface,which may be decomposed to form the partials and stacking fault.

Key wordsFGH95 powder metallurgy Ni-based alloy    creep    dislocation reaction    dislocation network    diffraction contrast analysis
收稿日期: 2012-11-29     
基金资助:

国家自然科学基金资助项目51271125

作者简介: 田素贵, 男, 1952年生, 教授

[1] Kim M T, Kim D S, Oh O Y.  Mater Sci Eng, 2008; A480: 218

[2] Thorsten K, Dietmar B, Eckhard N.  Acta Mater, 2004; 52: 2095
[3] Sofiane T, Raphael C, Laure G, Bernard V.  Mater Sci Eng, 2008; A483-484: 598
[4] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X.  Mater Sci Eng,2011; A528: 2076
[5] Li H Y, Song X P, Wang Y L, Chen G L.  Rare Met Mater Eng, 2009; 38: 64
(李红宇, 宋西平, 王艳丽, 陈国良. 稀有金属材料与工程, 2009; 38: 64)
[6] Jin D, Liu Z Q.  Int J Adv Manuf Technol, 2012; 60: 893
[7] Raujiol S, Pettinari F, Locq D, Caron P, Coujou A, Clement N.  Mater Sci Eng,2004; A387-389: 678
[8] Unocic R R, Viswanathan G B, Sarosi P M, Karthikeyan S, Li J, Mills M J.Mater Sci Eng, 2008; A483-484: 25
[9] Tao Y, Jia J, Liu J T.  J Iron Steel Res Int, 2010; 17: 73
[10] Shubhayu S, Pauline V N, Walter W M.  Metall Mater Trans, 2001; 32A: 2021
[11] Viswanathan G B, Sarosi P M.  Acta Mater, 2005; 53: 3041
[12] Karthikeyan S, Unocic R R, Sarosi P M, Viswanathan G B, Whitis D D,Mills M J.  Scr Mater, 2006; 54: 1157
[13] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C, Wang Y, Mills M J.  Prog Mater Sci,2009; 54: 839
[14] Zhou L, Li S X, Wang Y C, Wang Z G.  Acta Metall Sin, 2005; 41: 245
(周丽, 李守新, 王跃臣, 王中光. 金属学报, 2005; 41: 245)
[15] Wu W P, Guo Y F, Wang Y S.  Sci China-Phys Mech Astron, 2012; 55: 419
[16] Zhang J X, Wang J C, Harada H, Koizumi Y.  Acta Mater, 2005; 53: 4623
[17] Xie J, Tian S G, Zhou X M, Yu X F, Wang W X.  Mater Sci Eng, 2012; A538: 306
[18] Tian S G, Liu Y, Zhou X M, Zhao Z G, Bao X Y, Wang W X.  Chin J Aeronaut, 2009; 22: 444
[19] Semiatin S L, McClary K E, Rollett A D, Robert C G, Payton E J, Zhang F, Gabb T P.Metall Mater Trans, 2012; 43A: 1649
[20] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X.  Chin J Nonferrous Met,2010; 20: 852
(田素贵, 谢君, 周晓明, 钱本江, 伦建伟, 于丽丽, 汪武祥. 中国有色金属学报, 2010; 20: 852)
[21] Xie J, Tian S G, Zhou X M.  J Harbin Inst Technol, 2012; 44: 118
(谢君, 田素贵, 周晓明. 哈尔滨工业大学学报, 2012; 44: 118)
[22] Xie J, Tian S G, Zhou X M.  J Jiangsu Univ (Nat Sci Ed), 2012; 33: 576
(谢君, 田素贵, 周晓明. 江苏大学学报(自然科学版), 2012; 33: 576)
[23] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q.  Chin J Mater Res, 1999; 13: 633
(田素贵, 周慧华, 张静华, 杨洪才, 徐永波, 胡壮麒. 材料研究学报, 1999; 13: 633)
[24] Tian S G, Yu X F, Yang J H, Zhao N R, Xu Y B, Hu Z Q.  Mater Sci Eng, 2004; A379: 141
[25] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q.  Mater Sci Eng, 2000; A279: 160
 
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[7] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[11] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[14] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.