Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 739-744    DOI: 10.3724/SP.J.1037.2013.00048
  论文 本期目录 | 过刊浏览 |
Al元素对热轧316L不锈钢显微组织和力学性能的影响
喇培清,孟倩,姚亮,周毛熊,魏玉鹏
兰州理工大学有色金属新材料重点实验室, 兰州 730050
EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL
LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng
Key Laboratory of Nonferrous Metal Materials of Lanzhou University of Technology, Lanzhou 730050
引用本文:

喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
LA Peiqing, MENG Qian, YAO Liang, ZHOU Maoxiong, Wei Yupeng. EFFECTS OF Al ELEMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-ROLLED 316L STAINLESS STEEL[J]. Acta Metall Sin, 2013, 49(6): 739-744.

全文: PDF(3176 KB)  
摘要: 

利用光学显微镜(OM)、电子探针(EPMA)及X射线衍射(XRD), 研究了不同Al含量316L不锈钢热轧态显微组织,测试了其力学性能和抗腐蚀性能. 结果表明: Al含量小于2%时, 基体为γ, Al含量为4%时,基体转变为α+γ双相组织, Al元素分别以固溶和Al4C3沉淀相的形式存在.合金的抗拉强度、屈服强度随着Al含量的增加, 先降低后升高, 塑性略有下降.利用SEM分析合金的断口形貌表明, 其断裂形式均为延性断裂.含2%Al的316L不锈钢具有最低的均匀腐蚀速率和晶间腐蚀速率,基体中Al2O3钝化膜的形成及Al4C3析出减少了贫Cr区的出现是导致材料耐蚀性提高的主要因素.

关键词 热轧316L不锈钢Al含量显微组织力学性能腐蚀性能    
Abstract

316L stainless steel is applied to high-temperature environment because of an attractive combination of mechanical properties and corrosion resistance in various aggressive environment. However, the corrosion resistance of 316L was reduced in a particular environment such as water vapor, aggressive sulfur gas which was attributed to the Cr2O3 protective scales formed in 316L. The Cr2O3 scales are compromised by water vapor due to the formation of volatile Cr oxy--hydroxide species. The Al2O3 is more thermodynamically stable in these enviroment than Cr2O3. In this work, the effects of Al element on the microstructure, mechanical properties and corrosion resistance of hot-rolled 316L were investigated. Microstructure evolution was observed by OM, EPMA and XRD. Mechanical properties were measured by tensile tests. The resistances to intergranular and uniform corrosion of hot-rolled 316L with different Al content were investigated by means of soaking method at 65%HNO3 and  5\%H2SO4, respectively. The results show that microstructure has changed from single γ to α+γdouble phase. With the increase of Al content in 316L, the yield strength and ultimate tensile strength increased but the ductility decreased. The fracture morphology of tensile was observed by SEM. Which indicated that the fracture mechanism behaved in ductile fracture. Corrosion rate of intergranular and uniform corrosion decreased remarkly as the Al content increased. The optimum Al content in terms of corrosion rate curve was about 2%. Improvment of corrosion resistance was mainly due to Al2O3 scale formed in 316L.

Key wordshot-rolled 316L stainless steel    Al content    microstructure    mechanical property    corrosion performance
收稿日期: 2013-01-25     
基金资助:

国家自然科学基金资助项目51164022

作者简介: 喇培清, 男, 回族, 1971年生, 教授, 博士

[1] China Special Steel Enterprises Association Stainless Steel Branch Compiled.  Stainless Steel Practical Handbook. Beijing: China Science and Technology Press, 2003: 531

 (中国特钢企业协会不锈钢分会. 不锈钢实用手册. 北京: 中国科学技术出版社, 2003: 531)
[2] Gan J M.  Petro Chem Equip Technol, 2004; 13(4): 57
 (甘俊民. 石油化工设备技术, 2004; 13(4): 57
[3] Ramakrisnan V, McGurty J A, Jayarman N.  Oxid Met, 1988; 30: 185
[4] McGurty J A.  US Pat, 4086085, 1978
[5] Pivin J C, Delaunay D, Roques--Carmes C, Huntz A M, Lacombe P.  Corros Sci, 1980; 20: 35
[6] Bangaru N V, Krutenat R C,  J Vac Sci Technol, 1984; 2B: 806
[7] Zhang Y, Pint B A, Garner G W, Cooley K W, Haynes J A.  Surf Coat Technol, 2004; 35: 188
[8] Vijayalakshmi U, Rajeswari S.  J Sol--Gel Sci Technol, 2012; 63: 45
[9] Srinivasan V S, Sandhya R, Bhanu Sankara Rao K, Mannan S L, Raghavan K S.
 Int J Fatigue, 1991; 13: 471
[10] Prescott R, Graham M J.  Oxid Met, 1992; 38: 233
[11] Teng Z K, Liu C T, Ghosh G, Liaw P K, Fine M E.  Intermetallics, 2010; 18: 1437
[12] Kondo K, Miwa Y, Okubo N, Kaji Y, Tsukada T.  J Nucl Mater, 2011; 417: 892
[13] Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T,
Lu Z P, Bei H.  JOM, 2008; 60(7): 12
[14] La P Q, Li Y F, Liu S G, Shen D, Wang H D.  Iron Steel, 2010; 45(5): 71
 (喇培清, 李玉峰, 刘闪光, 申达, 王鸿鼎. 钢铁, 2010; 45(5): 71)
[15] La P Q, Li Y F, Liu S G.  J Mater Prot, 2010; 43(12): 62
 (喇培清, 李玉峰, 刘闪光. 材料保护, 2010; 43(12): 62)
[16]  Brady M P, Yamamoto Y, Santella M L, Walker L R . Oxid Met, 2009; 72: 311
[17] Zhang B W, Liao S Z.  Shanghai Met, 1999; 21(2): 3
 (张邦维, 廖树帜. 上海金属, 1999; 21(2): 3)
[18] Asteman H, Spiegel M A.  Corros Sci, 2008; 50: 1734
[19] Wolff I M, Iorio L E, Rumpf T, Scheers P V T, Potgieter J H.  Mater Sci Eng, 1998;A241: 264
[20] Aydogdu G H, Aydinol M K.  Corros Sci, 2006; 48: 3565
[21] Sidhom H, Amadou T, Sahlaoui H, Braham C.  Metall Mater Trans, 2007; 38A: 1269
[22] Xiao J M.  The Problem of Metalography in Stainless Steel. Beijing: Metallurgical Industry Press, 2006: 155
 (肖纪美. 不锈钢的金属学问题. 北京: 冶金工业出版社, 2006: 155)
[23] Iron and Steel Research Institute of the Metallurgical Industry Ministry.  The Alloy Steels Manual. Beijing: China Industry Press, 1972: 42
 (冶金工业部钢铁研究院. 合金钢手册. 北京: 中国工业出版社, 1972: 42)
[24] Wu J.  Duplex Stainless Steel. Beijing: Metallurgical Industry Press, 1999: 22
 (吴玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 22)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.