Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 495-500    
  论文 本期目录 | 过刊浏览 |
Ti或Al添加对Zr50Cu50非晶合金W润湿行为和界面特性的影响
马国峰1),贺春林1), 李正坤2),张波2),李宏2),张海峰2),胡壮麒2)
1) 沈阳大学辽宁省先进材料制备技术重点实验室, 沈阳 110044
2) 中国科学院金属研究所沈阳国家联合实验室, 沈阳 110016
EFFECTS OF THE ADDITION OF Ti OR Al ON THE WETTING BEHAVIORS AND INTERFACIALCHARACTERISTICS OF Zr50Cu50 BULK METALLIC GLASS/W SUBSTRATE
MA Guofeng1), HE Chunlin1), LI Zhengkun2), ZHANG Bo2), LI Hong2), ZHANG Haifeng2), HU Zhuangqi2)
1)Institute of Surface Engineering, Key Lab of Advance Materials Technology of Educational Department Liaoning Province, Shenyang University, Shenyang 110044
2)Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

马国峰,贺春林, 李正坤,张波,李宏,张海峰,胡壮麒. Ti或Al添加对Zr50Cu50非晶合金W润湿行为和界面特性的影响[J]. 金属学报, 2013, 29(4): 495-500.
MA Guofeng, HE Chunlin, LI Zhengkun, ZHANG Bo, LI Hong, ZHANG Haifeng, HU Zhuangqi. EFFECTS OF THE ADDITION OF Ti OR Al ON THE WETTING BEHAVIORS AND INTERFACIALCHARACTERISTICS OF Zr50Cu50 BULK METALLIC GLASS/W SUBSTRATE[J]. Acta Metall Sin, 2013, 29(4): 495-500.

全文: PDF(1869 KB)  
摘要: 

采用座滴法研究了在真空条件下, Al或Ti对Cu50Zr50非晶合金与W基片之间的润湿行为和界面结合状态的影响. 借助SEM和XRD分析了添加Al或Ti对Cu50Zr50非晶合金/W界面微观结构和界面结合机制的影响. 结果表明: Al或Ti的添加有利于降低Cu50Zr50非晶合金熔体的表面张力 , 从而改善了其与W之间的润湿性;在实验范围内, Cu50Zr50非晶合金/W界面附近有新相ZrW2生成, 添加Al或Ti对Cu50Zr50非晶合金/W界面微观结构的影响不同, Al的添加促进了界面反应的进行, 随着Al的添加量增加, 界面反应产物ZrW2相在界面处形成的连续反应层减小, 而在熔体中富Al且贫Cu的相中析出的量增大. Ti的添加抑制了界面反应的进行, 随着Ti的添加量增加, 界面反应物ZrW2逐渐消失, 进而使界面结合机制由最初的溶解扩散和界面反应型混合机制转变为单独的溶解扩散型.

关键词 Cu50Zr50非晶合金W基片AlTi润湿性    
Abstract

In order to get the good performance of metal W reinforced Zr-based bulk metallicglass (BMG) matrix composites, it is necessary to understand the effects of alloy elements on the wettability between Zr-based BMG and W substrate. In this work, the effects of the addition of Ti or Al on the wetting behaviors and interfacial characteristics of Zr50Cu50 BMG on W substrate were studied at different temperatures in a high vacuum by using a sessile drop technique. The SEM and XRD were used to analyze the microstructure and bonding mechanism of the Zr50Cu50 BMG / W interface with the addition of Ti or Al element. The results show that the wetting angle of Zr50Cu50 molten alloy on W substrate decreases with increasing content of Ti or Al in liquid Zr50Cu50 and experimental temperature. The wettability of Zr50Cu50 BMG on W substrates is improved because the surface tension of Zr50Cu50 molten alloy decreases with increasing content of Ti or Al. It is found that the behavior between Zr50Cu50 BMG and W substrate is reactive wetting in nature, and there exists a new ZrW2 phase precipitated in the vicinity of the Zr50Cu50 BMG /W interface. The addition of Ti or Al element has different effects on the microstructure and bonding mechanism of Zr50Cu50 BMG /W interface. On the one hand, the addition of Al element promotes the interfacial reaction. With increasing content of Al, continuous reaction layers of ZrW2 phase in the interface reduce, and there are massive precipitates of Al--rich and Cu--poor phases in molten Zr50Cu50 alloy. On the other hand, the addition of Ti element restrains the interfacial reaction which gradually disappears with increasing content of Ti.

Key wordsZr50Cu50 bulk metallic glass (BMG)    W substrate    Al    Ti    wettability
收稿日期: 2012-10-27     
基金资助:

国家重点基础研究计划项目2011CB606301, 国家自然科学基金项目50825402以及辽宁省博士启动基金项目20111019资助

作者简介: 马国峰, 男, 1979年生, 博士

[1] Conner R D, Johnson R B, Scruggs V. Int J Impact Eng, 2000; 24: 435


[2] Chroers J, Samwer K, Szuecs F. J Mater Res, 2000; 15: 1617

[3] Qiao D C, Zhang H F, Li H, Hu Z Q.  Acta Metall Sin, 2003; 10: 1076

(乔冬春, 张海峰, 李宏, 胡壮麒. 金属学报, 2003; 10: 1076)

[4] Liu N, Zhang H F, Hu Z Q. J Alloys Compd, 2010; 494: 347

[5] Liu N, Ma G F, Zhang H F, Hu Z Q. Mater Lett, 2008; 62: 3195

[6] Shen P, Zhang D, Zheng X H, Lin Q L, Jiang Q C.  Mater Chem Phys, 2009; 115: 322

[7] Pauly S, Das J, Mattern N, Kim D H, Eckert J.  Intermetallics, 2009; 17: 453

[8] Xue X M, Wang J T, Sui Z T. J Mater Sci, 1993; 28: 1317

[9] Saiz E, Hwang C W, Suganuma K, Tomsia A P.  Acta Mater, 2003; 51: 3185

[10] Wang X H, Conrad H.  Metall Mater Trans, 1995; 26A: 459

[11] Hui X D, Yu J L, Wang M L, Dong W, Chen G L.  Intermetallics, 2006; 14: 931

[12] Bondi A.  Chem Rev, 1953; 52: 417

[13] Li J.  J Mater Sci, 1992; 11: 1551

[14] Voue M, De Coninck J.  Acta Mater, 2000; 48: 4405

[15] Massalski T B.  Binary Alloy Phase Diagrams. 1st Ed, New York: ASM International, 1990: 2923

[16] Takeuchi A, Inoue A.  Mater Trans-JIM, 2000; 41: 1372

[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[10] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[11] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[12] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[13] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[14] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[15] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.