Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 1-9    DOI: 10.3724/SP.J.1037.2012.00403
  论文 本期目录 | 过刊浏览 |
Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析
鲁法云,杨平,孟利,王会珍
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION
LU Fayun, YANG Ping, MENG Li, WANG Huizhen
 
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

鲁法云,杨平,孟利,王会珍. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J]. 金属学报, 2013, 49(1): 1-9.
LU Fayun, YANG Ping, MENG Li, WANG Huizhen. MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION[J]. Acta Metall Sin, 2013, 49(1): 1-9.

全文: PDF(1287 KB)  
摘要: 

对Fe-22Mn-3Si-2Al高锰TRIP/TWIP钢拉伸变形后的组织、性能特点进行研究, 利用EBSD技术分析了形变过程中马氏体相变的晶体学特点. 结果表明, Fe-22Mn钢形变前含有大量硬度高于奥氏体的热致ε-M; 拉伸变形后, 热致ε-M转变为αM, ε-M与αM相变有明显的先后顺序, 即具有不同步性. Fe-22Mn钢拉伸时TRIP效应和TWIP效应共存, 具有良好的塑性和强度结合, 且ε-M没有引起低温脆性.热致ε-M为倾转的基面取向, 形变时易发生基面滑移, 并发生少量86°<11200>孪晶, 在出现30°<0001>误标后与ε-M基体形成93°<7253>取向关系. 形变后α-M取向绕<110>转动, 变得漫散, 形成“彗星拖尾”现象. 同时, 形变过程中奥氏体的取向也发生转动, 产生绕<110>轴的小角度取向差. 此外, 原始奥氏体中的大量退火孪晶界对马氏体相变有促进作用.

关键词 RIP/TWIP 钢拉伸变形ε-M晶体学    
Abstract

High manganese steels demonstrate significant potential for industrial application due to their remarkable TRIP/TWIP effects at room temperature. Thus, they attract interest of many researchers. In this work, mechanical properties and microstructure evolutions of an Fe-22Mn-3Si-2Al TRIP/TWIP steel after tensile deformation were studied by mechanical tests and SEM analysis, and in particular, the crystallography of martensitic transformation was analyzed by EBSD technique. The results show that, plenty of harder thermalε-martensite existed before deformation and transformed to α’ -martensite during tensile deformation, namely the two kinds of martensite transformed asynchronously. During deformation, the TRIP effect by strain induced α’-martensite and the TWIP effect by deformation twinning coexisted, leading to good combination of strength and ductility in this steel, and furthermore, ε-martensite didn't cause the low temperature brittleness. The thermal ε-martensite showed tilting basal texture. When deformed,basal slip was an easy activity, whereas deformation twinning of 86°<1120> was also detected, which sometimes revealed 93°<7253> relationships by a combination of 30°<0001> misorientation due to mis-indexing of pseudosymmetry during EBSD measurement. During tensile deformation α’-martensite revealed a rotation around crystallographic <110> axis and scattered orientations, forming the phenomenon of comets trailing. Besides, austenitic orientations also rotated and increased low angle misorientations. And annealing twins in austenite was found to facilitate the martensitic transformation.

Key wordsTRIP/TWIP steel    tensile deformation    ε-martensite    crystallography
收稿日期: 2012-07-09     
基金资助:

国家自然科学基金项目50771019和高等学校博士学科点专项科研基金项目20090006110013资助

作者简介: 鲁法云, 女, 1985年生, 博士生

 


[1] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391

[2] Schumann V H. Neue Hutte, 1972; 17: 605

[3] Saeed-Akbari A, Imlau J, Prahl U, Bleck W. Metall Mater Trans, 2009; 40A: 3076

[4] Allain S, Chateau J-P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158

[5] Dumay A, Chateau J-P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483-484: 184

[6] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 3: 438

[7] Bracke L, Kestensa L, Penning J. Scr Mater, 2007; 57: 385

[8] Mina X H, Sawaguchi T, Ogawa K, Maruyama T, Yin F X, Tsuzaki K. Mater Sci Eng, 2011; A528: 5251

[9] Chun Y S, Kim J S, Park K-T, Lee Y-K, Lee C S. Mater Sci Eng, 2012; A533: 87

[10] Kirindi T, Dikici M. J Alloys Compd, 2006; 407: 157

[11] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87

[12] Wu X, Tao N, Hong Y, Lu J, Lu K. Scr Mater, 2005; 52: 547

[13] Yang H-S, Bhadeshia H K D H. Scr Mater, 2009; 60: 493

[14] Lu F Y, Yang P, Meng L, Cui F E, Ding H. J Mater Sci Technol, 2011; 27: 257

[15] Lu Y P, Hutchinson B, Molodov D A, Gottstein G. Acta Mater, 2010; 58: 3079

[16] Koyama M, Sawaguchi T, Lee T, Lee C S, Tsuzaki K. Mater Sci Eng, 2011; A528: 7310

[17] Datta K, Delhez R, Bronsveld P M, Beyer J, Geijselaers H J M, Post J. Acta Mater, 2009; 57: 3321

[18] Hedstrom P, Lienert U, Almer J, Oden M. Mater Lett, 2008; 62: 338

[19] Wu C-C, Wang S-H, Chen C-Y, Yang J-R, Chiu P-K, Fang J. Scr Mater, 2007; 56: 717

[20] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 657

(杨平, 鲁法云, 孟利, 崔凤娥. 金属学报, 2010; 46: 657)

[21] Yang P, Lu F Y, Meng L, Cui F E. Acta Metall Sin, 2010; 46: 666

(杨平, 鲁法云, 孟利, 崔凤娥. 金属学报, 2010; 46: 666)

[22] Liu T Y, Yang P, Meng L, Lu F Y. J Alloys Compd, 2011; 509: 8337

[23] Yang P, Liu T Y, Lu F Y, Meng L. Steel Res Int, 2012; 83: 368

[24] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196

[25] Jin J E, Lee Y K. Mater Sci Eng, 2009; A527: 157

[26] Beladi H, Timokhina I B, Estrin Y, Kim J, De Cooman B C, Kim S K. Acta Mater, 2011; 59: 7787
[1] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[2] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[3] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[4] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[5] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[6] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[7] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[8] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[9] 赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
[10] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[11] 由洋 王学敏 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J]. 金属学报, 2012, 48(11): 1290-1298.
[12] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[13] 顾新福 张文征. 马氏体相变晶体学的简易矢量分析方法[J]. 金属学报, 2011, 47(2): 241-245.
[14] 栾军华 刘国权 王浩 . 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47(1): 69-73.
[15] 石章智 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计[J]. 金属学报, 2011, 47(1): 41-46.