Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 69-73    DOI: 10.3724/SP.J.1037.2010.00233
  论文 本期目录 | 过刊浏览 |
纯Fe试样中晶粒的三维可视化重建
栾军华1), 刘国权1, 2), 王浩1)
1) 北京科技大学材料科学与工程学院材料学系, 北京 100083
2) 北京科技大学新金属材料国家重点实验室, 北京 100083
THREE--DIMENSIONAL RECONSTRUCTION OF GRAINS IN PURE IRON SPECIMEN
LUAN Junhua1),  LIU Guoquan1,2), WANG Hao1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

栾军华 刘国权 王浩 . 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47(1): 69-73.
, , . THREE--DIMENSIONAL RECONSTRUCTION OF GRAINS IN PURE IRON SPECIMEN[J]. Acta Metall Sin, 2011, 47(1): 69-73.

全文: PDF(1130 KB)  
摘要: 将经典的三维(3D)晶粒组织系列截面分析方法与EBSD有机结合, 以纯Fe为实验材料, 基于400幅纯Fe晶粒组织系列截面图像(每个截面图像包括约150个晶粒截面), 成功构建了集多重信息于一体的纯Fe材料中一组3D晶粒的数字化可视模型. 该类晶粒模型可供在3D空间从任意角度随意观察, 可定量反映单个晶粒尺寸、形状及拓扑特征等几何形态信息, 并可给出各晶粒及其晶界在3D多晶体空间中的真实取向信息.
关键词 3D重建系列截面法 电子背散射衍射晶粒几何形貌晶体学取向    
Abstract:The informations of hree dimensional (3D) grain in real materials were rarely obtained directly, especially when the grain size, shape, topology and orientation were all required. By combining the classical serial sectioning and electron backscatter diffraction (EBSD) technique, a 3D digital visible model of a group of grains in a real pure iron specimen was constructed based on 400 parallel serial section images (about 150 grains appearing in each section image) with an average inter-section distance of (1.69±0.3) μm. The model presented enables the stereoscopic observation in a 3D space. Besides, this model can provide not only the quantitative geometric information including grain sizes, shapes and topological characteristics, but also the real orientation information of both the grains and their boundaries in 3D polycrystal space, which offers new insights into the digitalization and visualization of real material microstructures.
Key words3D reconstruction    serial sectioning    EBSD    grain morphology    crystallographic orientation
收稿日期: 2010-05-14     
ZTFLH: 

O189

 
基金资助:

国家自然科学基金项目50871017和50901008, 高等学校博士学科点专项科研基金项目200800080003及中国博士后科学基金项目20090460209和201003050资助

作者简介: 栾军华, 女, 1985年生, 博士生
[1] Uchic M D, Kral M V, Spanos G, Dimiduk D M. Metall Mater Trans, 2004; 35A: 1925

[2] MacPherson R D, Srolovitz D J. Nature, 2007; 446: 1053

[3] von Neumann J. In: Herring C ed., Metal Interfaces. Cleveland: American Society for Metals, 1952: 108

[4] Kinderlehrer D. Nature, 2007; 446: 995

[5] Watanabe T. Mater Sci Forum, 2002; 408: 39

[6] Watanabe T. Res Mech, 1984; 11: 47

[7] Rohrer G S, Saylora D M, Dasherb B E, Adamsc B L, Rollett A D, Wynblatt P. Z Metall, 2004; 95: 197

[8] Randle V, Rohrer G S, Miller H M, Coleman M, Owen G T. Acta Mater, 2008; 56: 2363

[9] Fang X Y,WangWG, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404

(方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2010; 46: 404)

[10] Mishra S K, Pant P, Narasimhan K, Rollett A D, Samajdar I. Scr Mater, 2009; 61: 273

[11] DeHoff R T. J Microsc, 1983; 131: 259

[12] Holm E A, Duxbury P M. Scr Mater, 2006; 54: 1035

[13] Desch C H. J Inst Met, 1919; 22: 241

[14] Hull F C. Mater Sci Technol, 1988; 4: 778

[15] Williams W M, Smith C S. Trans AIME, 1952; 194: 755

[16] Rhines F N, Craig K R. Rousse Metal Trans, 1976; 7A: 1729

[17] DeHoff R T, Liu G Q. Metall Trans, 1985; 16A: 2007

[18] Sterio D C. J Microsc, 1985; 138: 127

[19] Kral M V, Mangan M A, Spanos G, Rosenberg R O. Mater Charact, 2000; 45: 17

[20] Wu K M. Acta Metall Sin, 2005; 41: 1237

(吴开明. 金属学报, 2005; 41: 1237)

[21] Wu K M, Enomoto M. Scr Mater, 2002; 46: 569

[22] Chawla N, Sidhu R S, Ganesh V V. Acta Mater, 2006; 54: 1541

[23] Dudek M A, Chawla N. Mater Charact, 2008; 59: 1364

[24] Sharma H, Bohemen S M C, Petrov R H. Acta Mater, 2010; 58: 2399

[25] Wu K M. Scr Mater, 2006; 54: 569

[26] Dillon S J, Rohrer G S. In: Rollett A D ed., Proc 15th Int Conf Textures of Materials. Hoboken: John Wiley & Sons Pte Ltd, 2009: 117

[27] Ghosh S, Bhandari Y, Groeber M. Computer–Aided Des, 2008; 40: 293

[28] Groeber M, Ghosh S, Uchic M D, Dimiduk D M. Acta Mater, 2008; 56: 1257

[29] Brahme A, Alvi M H, Saylor D, Fridyc J, Rollett A D. Scr Mater, 2006; 55: 75
[1] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[2] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[3] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[4] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[5] 程俊业,赵爱民,陈银莉,董瑞,黄耀. 不同温度回火后30MnB5热成形钢的EBSD研究[J]. 金属学报, 2013, 49(2): 137-145.
[6] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[7] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[8] 胡静 林栋樑 王 燕. EBSD技术分析大晶粒NiAl合金高温塑性变形 组织演变与CSL特征晶界分布[J]. 金属学报, 2009, 45(6): 652-656.
[9] 刘庆 姚宗勇 A. Godfrey 刘伟. 中低应变量冷轧AA1050铝合金中晶粒取向与形变位错界面的演变[J]. 金属学报, 2009, 45(6): 641-646.
[10] 姚宗勇 刘庆 A. Godfrey 刘伟. 大应变量冷轧AA1050铝合金微观组织与织构的演变[J]. 金属学报, 2009, 45(6): 647-651.
[11] 张玉彬 A. Godfrey 刘伟 刘庆. 大应变量冷轧金属Ni再结晶过程中Σ3晶界演化[J]. 金属学报, 2009, 45(10): 1159-1165.
[12] 刘静; 文慕冰 . Cu对IF钢再结晶动力学的影响[J]. 金属学报, 1999, 35(1): 57-61 .