Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 41-46    DOI: 10.3724/SP.J.1037.2010.00323
  论文 本期目录 | 过刊浏览 |
用相变晶体学指导Mg-Sn-Mn合金优化设计
石章智, 张文征
清华大学材料科学与工程系先进材料实验室, 北京 100084
DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION
SHI Zhangzhi, ZHANG Wenzheng
Key Laboratory of Advanced Materials of Ministry of Education, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

石章智 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计[J]. 金属学报, 2011, 47(1): 41-46.
, . DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION[J]. Acta Metall Sin, 2011, 47(1): 41-46.

全文: PDF(813 KB)  
摘要: 以相变晶体学为主要原则对Mg-Sn-X合金进行优化设计. 在对现有镁合金系统充分调研的基础上, 根据Mg基体与析出相的相变晶体学匹配关系, 提出2条相变晶体学判据来判断可能沿Mg基体[0001]α方向择优生长的析出相. 根据这2条相变晶体学判据结合相图分析推测在Mg-Sn-Mn系统中可能得到沿Mg基体[0001]α方向择优生长的β-Mn析出相. 对Mg-7.5Sn-2.2Mn(质量分数, %)合金时效组织的TEM研究证实了上述判断. 研究结果表明, β-Mn析出相呈棒状, 长轴沿Mg基体[0001]α方向, 它与Mg基体的位向关系(OR)是: [0001]α///[211]β-Mn, [0110]α///[011]β-Mn, [2110]α//[111]β-Mn.
关键词 镁合金设计 相变晶体学 析出相形貌位向关系    
Abstract:Crystallography of phase transformation is used as the main principal to guide Mg-Sn-X alloy design. Based on a comprehensive literature survey, two criteria of crystallography of phase transformation are given to select the precipitate probably growing along [0001]α direction of Mg matrix. Combined with available data of phase diagram, we deduce that β-Mn in Mg-Sn-Mn system is a hopeful candidate. TEM study on the specimen of Mg-7.5Sn-2.2Mn (mass fraction, %) alloy confirms that rod-like β-Mn precipitates grow along [0001]α, and their orientation relationship (OR) with Mg matrix is [0001]α///[211]β-Mn, [0110]α///[011]β-Mn, [2110]α//[111]β-Mn.
Key wordsmagnesium alloy design    crystallography of phase transformation    morphology of precipitates    orientation relationship
收稿日期: 2010-07-02     
ZTFLH: 

TG146.22

 
基金资助:

国家重点基础研究发展计划资助项目2007CB613704

作者简介: 石章智, 男, 1984年生, 博士生
[1] Bamberger M, Dehm G. Annu Rev Mater Res, 2008; 38: 505

[2] Mordike B L. Mater Sci Eng, 2002; A324: 103

[3] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259

[4] Nie J F, Gao X, Zhu S M. Scr Mater, 2005; 53: 1049

[5] Nie J F, Oh–ishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061

[6] Apps P J, Karimzadeh H, King J F, Lorimer G W. Scr Mater, 2003; 48: 1023

[7] Zhu Y M, Morton A J, Nie J F. Scr Mater, 2008; 58: 525

[8] Yamada K, Hoshikawa H, Maki S, Ozaki T, Kuroki Y, Kamado S, Kojima Y. Scr Mater, 2009; 61: 636

[9] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413–414: 555

[10] Zhang M, Zhang W Z, Zhu G Z. Scr Mater, 2008; 59: 866

[11] Planken J V D. J Mater Sci Lett, 1969; 4: 927

[12] Mendis C L, Bettles C J, Gibson M A, Hutchinson C R. Mater Sci Eng, 2006; A435–436: 163

[13] Sasaki T T, Oh–ishi K, Ohkubo T, Hono K. Scr Mater, 2006; 55: 251

[14] Mendis C L, Bettles C J, Gibson M A, Gorsse S, Hutchinson C R. Philos Mag Lett, 2006; 86: 443

[15] Liu H M, Tang Y B, Wei S H, Gao N. Mater Sci Eng, 2007; A464: 124

[16] Polmear I J. Light Alloys. 2nd Ed., London: Biddles Ltd, 1989: 200

[17] Gao X, He S M, Zeng X Q, Peng L M, Ding W J, Nie J F. Mater Sci Eng, 2006; A431: 322

[18] Antion C, Donnadieu P, Tassin C, Pisch A. Philos Mag, 2006; 86A: 2797

[19] Nie J F, Muddle B C. Acta Mater, 2000; 48: 1691

[20] He S M, Zeng X Q, Peng L M, Gao X, Nie J F, Ding W J. J Alloys Compd, 2006; 421: 309

[21] Mendis C L, Oh–ishi K, Kawamura Y, Honma T, Kamado S, Hono K. Acta Mater, 2009; 57: 749

[22] Gao X, Nie J F. Scr Mater, 2007; 56: 645

[23] Singh A, Tsai A P. Scr Mater, 2007; 57: 941

[24] Kang D H, Park S S, Oh Y S, Kim N J. Mater Sci Eng, 2007; A449–451: 318

[25] Hort N, Huang Y, Leil T A, Maier P, Kainer K U. Adv Eng Mater, 2006; 8: 359

[26] Yang M, Pan F, Cheng L, Shen J. Mater Sci Eng, 2009; A512: 132

[27] Mendis C L, Bettles C J, Gibson M A, Gorsse S. Philos Mag Lett, 2006; 86: 443

[28] Sasaki T T, Ju J D, Honoa K, Shin K S. Scr Mater, 2009; 61: 80

[29] Powder Diffraction Files, from JCPDS–International Center for Diffraction Data, 2004

[30] Massalski T B. ASM Hand Book: Binary Alloy Phase Diagrams. 2nd Ed., Material Park, OH: ASM International, 1992: 1

[31] Zhang M X, Kelly P M. Acta Mater, 2005; 53: 1085
[1] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[2] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[3] 周欢, 张铁邦, 吴泽恩, 胡锐, 寇宏超, 李金山. 间隙原子C作用下TiAl合金中析出相的形成及演变规律*[J]. 金属学报, 2014, 50(7): 832-838.
[4] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[5] 顾新福 张文征. 马氏体相变晶体学的简易矢量分析方法[J]. 金属学报, 2011, 47(2): 241-245.
[6] 孟杨 张文征. 两种位向关系的描述方法的转换及其应用[J]. 金属学报, 2010, 46(6): 647-656.
[7] 吴静 张文征 . 从相变出发理解和计算变体间位向差[J]. 金属学报, 2009, 45(8): 897-905.
[8] 吴静 刘新新 顾新福 戴付志 杨海涛 张文征 . 铁基合金中板条马氏体帐篷型表面浮凸位移的定量分析[J]. 金属学报, 2009, 45(12): 1425-1434.
[9] 刘嘉斌; 曾跃武; 孟亮 . Cu-71.8%Ag共晶体中两相的台阶界面及晶体取向[J]. 金属学报, 2007, 43(8): 803-806 .
[10] 邱冬; 张文征 . 沉淀相变晶体学模型的研究进展[J]. 金属学报, 2006, 42(4): 341-349 .
[11] 欧阳柳章; 罗承萍 . 原位生成Al2O3增强Al-4Mg基复合材料中的Al2O3/Al位向关系[J]. 金属学报, 2005, 41(7): 750-754 .
[12] 刘伟平; Elssn.G . Cu/Al2O3扩散焊接头界面晶体位向关系对断裂能量的影响[J]. 金属学报, 2000, 36(8): 879-882 .
[13] 罗承萍; 隋贤栋; 欧阳柳章; 骆灼旋 . SiCp/Al-Si复合材料中SiC/Al的晶体学位向关系[J]. 金属学报, 1999, 35(4): 343-347 .