Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1479-1486    DOI: 10.3724/SP.J.1037.2012.00419
  论文 本期目录 | 过刊浏览 |
激光悬浮区熔Al2O3基共晶自生复合材料微观组织与力学性能
贾晓娇,张军,苏海军,宋衎,刘林,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING
JIA Xiaojiao, ZHANG Jun, SU Haijun, SONG Kan, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

贾晓娇 张军 苏海军 宋衎 刘林 傅恒志. 激光悬浮区熔Al2O3基共晶自生复合材料微观组织与力学性能[J]. 金属学报, 2012, 48(12): 1479-1486.
JIA Xiaojiao ZHANG Jun SU Haijun SONG Kan LIU Lin FU Hengzhi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING[J]. Acta Metall Sin, 2012, 48(12): 1479-1486.

全文: PDF(2713 KB)  
摘要: 

采用激光悬浮区熔定向凝固方法制备了高致密度Al2O3/YAG/ZrO2共晶自生复合陶瓷材料,研究多元复相陶瓷在高温度梯度、不同生长条件下的凝固组织形态演化规律, 定量表征凝固速率与氧化物陶瓷共晶间距的关系, 在此基础上, 考察其力学性能并分析凝固组织与断裂韧性的关系. 研究结果表明:激光悬浮区熔Al2O3/YAG/ZrO2三元自生复合材料呈现与热流方向平行、定向性良好的非规则层片共晶形貌, 共晶组织随凝固速率的增大而快速细化, 凝固速率为200 μm/s时, 最小层片间距达到0.46 μm. 平均层片间距λav与凝固速率V之间符合关系:λavV0.5=12.4 μm1.5?s-0.5,且明显小于同等凝固速率条件下Al2O3/YAG二元共晶的平均层片间距.Al2O3/YAG/ZrO2三元共晶平均硬度为(19.0±1.0) GPa, 室温断裂韧性为(3.31±0.2) MPa?m1/2. 与二元共晶相比, 裂纹捕获、偏转以及共晶相热胀系数失配是三元共晶室温断裂韧性提高的主要原因.

关键词 激光悬浮区熔 定向凝固 三元共晶 自生复合材料 凝固组织 断裂韧性    
Abstract

Directionally solidified oxide eutectic in situ composites have been attracting increasing interest in recent years for use as the next generation of ultra–high–temperature structural materials because of their excellent high–temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. Al2O3/YAG/ZrO2 ternary eutectic in situ composites with high density are prepared by laser floating zone remelting technique. The microstructure evolution of Al2O3/YAG/ZrO2 ternary eutectic under high temperature gradient and different growth rates is investigated. The relationship between solidification rate and eutectic spacing for the ternary oxideeutectic is quantificationally characterized. On this basis, the mechanical properties and relationship between microstructure and fracture toughness are analysed. The results show that the directionally solidified Al2O3/YAG/ZrO2 ternary eutectic in situ composite belongs to typical irregular lamellar eutectic structure. The microstructure is rapidly refined with the increase of the solidification rate V . The minimal eutectic spacing observed is as fine as 0.46 μm when the solidification rate is 200 μm/s. The relationship between the average eutectic spacing (λav) and V is determined to be λavV 0.5=12.4 μm1.5·s−0.5. Moreover, the ternary eutectic lamellar spacing is much smaller than the binary one at the same solidification condition. The average hardness and room–temperature fracture toughness of the ternary eutectic are (19.0±1.0) GPa and (3.31±0.2) MPa·m1/2, respectively. As compared with the binary eutectic, the crack arrest, deflection and mismatch of thermal expansion coefficient of eutectic phases are the predominant toughening mechanisms of ternary eutectic composite.

Key wordslaser floating zone remelting    directional solidification    ternary eutectic    in situ composite    solidification microstructure    fracture toughness
收稿日期: 2012-07-12     
ZTFLH:  TG142  
基金资助:

国家自然科学基金项目51002122和51272211, 陕西省自然科学基金项目2010JQ6005以及航空科学基金项目2010ZF53064资助

作者简介: 贾晓娇, 女, 1987年生, 硕士生

[1] Hirano K. J Eur Ceram Soc, 2005; 25: 1191

[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49

[3] Waku Y, Sakata S, Mitani A, Shimizu K. Mater Res Innovations, 2001; 5: 94

[4] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117

[5] Su H J, Zhang J, Liu L, Eckert J, Fu H Z. Appl Phys Lett, 2011; 99: 221913

[6] Epelbaum B M, Shimamura K, Fukuda T, Suzuki K,Waku Y, Yoshikawa A. J Cryst Growth, 1999; 198–199: 471

[7] Lee J H, Yoshikawa A, Fukuda T, Waku Y. J Cryst Growth, 2001; 231: 115

[8] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457

(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)

[9] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380

[10] Pastor J Y, Llorca J, Salazar A, Oliete P B, Francisco I D, Pena J I. J Am Ceram Soc, 2005; 88: 1488

[11] Pastor J Y, Llorca J, Mart´?n A, Pe˜na J I, Oliete P B. J Eur Ceram Soc, 2008; 28: 2345

[12] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448

[13] Calderon Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365

[14] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313

[15] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113

[16] Flemings M C. Solidification Processing. New York: McGraw–Hill Inc., 1974: 2121

[17] Sato T, Sayama Y. J Cryst Growth, 1974; 22: 259

[18] Song K, Zhang J, Jia X J, Su H J, Liu L, Fu H Z. J Cryst Growth, 2012; 345: 51

[19] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179

[20] Andreeta E R M, Andreeta M R B, Hernandes A C. J Cryst Growth, 2002; 234: 782

[21] Jackson K A, Hunt J D. Trans Met Soc Aime, 1966; 236: 1129

[22] Waku Y, Sakata S, Mitani A, Shimizu K. J Mater Sci, 2002; 37: 2975

[23] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514

[24] Trivedi R, Kurz W. Acta Metall Mater, 1994; 42: 15

[25] Scriven L E, Sternling C V. Nature, 1960; 187: 186

[26] Bohm J, L¨udge A, Schr¨oderW. In: Hurle D T J ed., Handbook of Crystal Growth, Amsterdam: Elsevier, 1994: 214

[27] Niihara K. J Mater Sci Lett, 1983; 2: 221

[28] Anstis G R, Chantikul P, Lawn B R, Marshall D B. J Am Ceram Soc, 1981; 64: 533

[29] Su H J. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009

(苏海军. 西北工业大学博士学位论文, 西安, 2009)

[30] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419

[31] Llorca J, Pastor J Y, Poza P, Pe˜na J I, Francisco I, Larrea A, Orera V M. J Am Ceram Soc, 2004; 87: 633

[32] Pastor J Y, Poza P, Llorca J, Pe˜na J I, Merino R I, Orera V M. Mater Sci Eng, 2001; A308: 241

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[6] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[7] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[8] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[11] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[13] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[14] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[15] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.