Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1474-1478    DOI: 10.3724/SP.J.1037.2012.00362
  论文 本期目录 | 过刊浏览 |
液相原位反应法制备Cu-Y2O3复合材料
卓海鸥,唐建成,叶楠
南昌大学材料科学与工程学院, 南昌 330031
Cu–Y2O3 COMPOSITES PREPARED BY LIQUID PHASE IN SITU REACTION
ZHUO Haiou, TANG Jiancheng, YE Nan
Institute of Materials Science and Engineering, Nanchang University, Nanchang 330031
引用本文:

卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
ZHUO Haiou TANG Jiancheng YE Nan. Cu–Y2O3 COMPOSITES PREPARED BY LIQUID PHASE IN SITU REACTION[J]. Acta Metall Sin, 2012, 48(12): 1474-1478.

全文: PDF(890 KB)  
摘要: 

采用液相原位反应法制备了Cu-0.9Y2O3(体积分数, %)复合材料. TEM观察与SAD分析表明: Cu基体上均匀分布着纳米Y2O3颗粒, 其平均尺寸和颗粒间距分别为5.0和20 nm,Y2O3颗粒与基体共格, 晶面(422)Y2O3//(111)Cu,晶带轴[011]Y2O3//[112] Cu. 实验结果表明,Cu--0.9Y2O3复合材料的抗拉强度为568 MPa, 其强化机制为Orowan机制和切割机制共同作用, 其中Orowan机制产生的强度增值为185 MPa, 切割机制引起强度增加195 MPa.

关键词 液相原位反应 Cu-Y2O3复合材料 共格 强化机制    
Abstract

A growing trend to use new oxide dispersion strengthened (ODS) copper–based composites is observed recently world–wide. Yttria (Y2O3 ) and most rare earth oxides are potentially attractive as dispersiods for copper–based composites owing to their thermodynamic stability. Cu–0.9Y2O3  (volume fraction, %) composites were prepared with Cu–0.4Y (mass fraction, %) alloy by in situ reaction at liquidus temperature. The objective of the work was to investigatechanges in structure and strengthening mechanism of Cu–Y2O composites. TEM observation and SAD analysis of the composites indicate that the obtained Y2O3  nano–particles are uniformly distributed in copper matrix, their mean size and space between particles are 5.0 nm and 20 nm, respectively, and the cubic Y2O phase is coherent with copper matrix, which indicated (422)Y2O3//(111)Cu and [011]Y2O3//[112]Cu orientation relationship. The strengthening mechanism of the composites is analyzed and explained in three aspects: matrix strengthening, fine particles strengthening according to the Orowan model and shear model. The tensile strength of Cu–0.9Y2O3 composites is 568 MPa, which is strengthened by both Orowan mechanism and shear mechanism, the strength value added by Orowan mechanism and shear mechanism can be calculated to be 185 and 195 MPa, respectively.

Key wordsliquid phase in situ reaction    Cu–Y2O3 composite    coherent relationship    strengthening mechanism
收稿日期: 2012-06-19     
基金资助:

国家自然科学基金项目50801037, 51071082和51271090, 教育部长江学者和创新团队发展计划项目IRT0730, 教育部新世纪优秀人才支持计划项目CET-10-0184, 以及高等学校博士学科点专项基金项目20103601110001资助

作者简介: 卓海鸥, 男, 1988年生, 博士生

[1] Zhang S L, Yin Z M. Mater Rev, 2003; 17: 26

(张生龙, 尹志民. 材料导报, 2003; 17: 26)

[2] Li Z Y, Shen J, Cao F Y, Li Q C. J Mater Process Technol, 2003; 35: 60

[3] Liu P, Kang B X, Cao X G, Hang J L, Gu H C. Acta Metall Sin, 1999; 35: 561

(刘平, 康布熙, 曹兴国, 黄金亮, 顾海澄. 金属学报, 1999; 35: 561)

[4] Li Q, Ma B, Li L, Hang G J, Chen C L, Xie S S. Rare Met Mater Eng, 2011; 40(suppl): 132

(李 强, 马彪, 李雷, 黄国杰, 陈春玲, 谢水生. 稀有金属材料与工程, 2011; 40(增刊): 132)

[5] Yan P, Lin C G, Cui S, Lu Y J, Zhou Z L, Li Z D. J Wuhan Univ Technol, 2011; 26: 902

[6] Shen Y T, Cui C X, Meng F B, Wu R J. Acta Metall Sin, 1999; 35: 888

(申玉田, 崔春翔, 孟凡斌, 吴人洁. 金属学报, 1999; 35: 888)

[7] Tian B H, Liu P, Song K X, Li Y, Liu Y, Ren F Z, Su J H. Mater Sci Eng, 2006; A435–436: 750

[8] Nagorka M S, Levi C G, Lucas G E, Ridder S D. Mater Sci Eng, 1991; A142: 277

[9] Chakrabarti D J, Laughlin D E. In: Massalski T B ed., Binary Alloy Phase Diagrams. Ohio: American Society for Metals, 1986: 977

[10] Engels J M, Gasgnier M, Blaise G. J Alloys Compd, 1998; 267: 294

[11] Hu H Q. Metal Solidification Principle. Beijing: China Machine Press, 1981: 110

(胡汉起 著. 金属凝固原理. 北京: 机械工业出版社, 1981: 110)

[12] Ribis J, Carlan Y. Acta Mater, 2012; 60: 238

[13] Ribis J, Lozano–Perez S. Mater Lett, 2012; 74: 143

[14] Hirsch P, Howie A, Nicholson R B, Pashley D W. Translated by Liu A S, Li Y H. Electron Microscopy of Thin Crystals. Beijing: Science Press, 1983: 355


(Hirsch P, Howie A, Nicholson R B, Pashley D W著, 刘安生, 李永洪 \ 译. 薄晶体电子显微学. 北京: 科学出版社, 1983: 355)

[15] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D. Acta Metall Sin, 2010; 46: 334

(王衣, 孙锋, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)

[16] Stobrawa J P, Rdzawski Z M. Arch Mater Sci Eng, 2008; 30: 17

[17] Toualbi L, Ratti M, Andr´e G, Onimus F, Carlan Y. J Nucl Mater, 2011; 417: 225

[18] Cheng J Y, Yu F X, Ao X W. Adv Mater, 2011; 189–193: 70

[19] Nagorka M S, Lucas G E, Levi C G. Metall Mater Trans, 1995; 26A: 873

[20] Lee J, Jung J Y, Lee E, Park W J, Ahn S, Kim N J. Mater Sci Eng, 2000; A277: 274

[21] Zhu A W, Chen J, Starke JR E A. Acta Mater, 2000; 48: 2239

[22] Guo S H, Zhang M, Peng G Y, Tang J C. Adv Mater, 2011; 194–196: 1301

[23] Gerold V, Haberkorn H. Phys Status Solidi, 1966; 16B: 675

[24] Holzwarth U, Stamm H. J Nucl Mater, 2000; 279: 31

[25] Ardell A J. Metall Mater Trans, 1985; 16A: 2131

[26] Yong M, Ardell A J. Acta Mater, 2007; 55: 4419

[27] Datta A, Soffa W A. Acta Mater, 1976; 24: 987
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[7] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[8] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[9] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[10] 董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. Cu-2.1Fe合金中共格g-Fe粒子的粗化规律与强化效果[J]. 金属学报, 2014, 50(10): 1224-1230.
[11] 李海, , 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[12] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[13] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[14] 林双平 黄晖 文胜平 聂祚仁. 含Er 5083合金均匀化退火过程中Al3Er相的TEM观察[J]. 金属学报, 2009, 45(8): 978-982.
[15] 张坤; 王卫国; 方晓英; 郭红 . 不同温度轧制Pb--Ca--Sn--Al合金高温退火后的晶界特征分布[J]. 金属学报, 2008, 44(6): 652-658 .