Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1229-1236    DOI: 10.3724/SP.J.1037.2012.00261
  论文 本期目录 | 过刊浏览 |
镍基单晶高温合金杂晶形成倾向性的研究
张小丽,周亦胄,金涛,孙晓峰
中国科学院金属研究所, 沈阳 110016
STUDY ON THE TENDENCY OF STRAY GRAIN FORMATION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS
ZHANG Xiaoli, ZHOU Yizhou, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Science, Shenyang 110016
引用本文:

张小丽 周亦胄 金涛 孙晓峰. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48(10): 1229-1236.
ZHANG Xiaoli ZHOU Yizhou JIN Tao SUN Xiaofeng. STUDY ON THE TENDENCY OF STRAY GRAIN FORMATION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS[J]. Acta Metall Sin, 2012, 48(10): 1229-1236.

全文: PDF(3767 KB)  
摘要: 

采用2种不同平台尺寸的模型试样, 对镍基单晶高温合金定向凝固过程中的杂晶形成倾向性进行量化研究, 对不同合金的杂晶形成倾向性及杂晶在平台内的形成机制进行探索. 结果表明, 平台长度越长、高度越小时,杂晶越容易在平台内形核并长大; 在第一、二、三代镍基单晶高温合金SRR99, DD5和DD90中,第一代合金的杂晶形成倾向性最弱, 第二代次之, 第三代最强;凝固时平台尖角处的过冷度大于平台内部的过冷度, 且随着平台长度增加和平台高度减小, 平台尖角处的过冷度增大, 当平台尖角处的过冷度达到临界形核过冷度时, 杂晶在平台尖角处形核并快速长大进入平台内部.

关键词 镍基高温合金 定向凝固 杂晶 过冷度    
Abstract

 Ni–based single crystal (SC) superalloys are preferential materials for manufacturing blades and vanes of gas turbines, due to their superior mechanical properties resulting from the absence of grain boundaries. However, as the component geometry becomes more complex and the content of refractory elements increases gradually, the forming frequency of stray grains increases significantly leading to the component rejection during directional solidification (DS) of Ni–based SC superalloys. This becomes now one of the major problems encountered during DS and single crystal growth. In the interest of saving the actual manufacturing cost, therefore, the alloys with weak tendency of stray grain formation should be first applied. However, there are still no effective method to quantitatively evaluate the stray grain formation ability of a certain Ni–based SC superalloy. Thus, it is quite necessary to design a new method to do so. In this study, the two model samples with different platform geometries are first designed to investigate quantitatively the tendency of stray grain formation, used to summarize the ability of stray grain formation of different alloys and reveal the mechanism of stray grain formation within platforms. The first model sample with the same platform height but length increasing by degrees along the solidification direction, is used to quantitatively characterize the stray grain formation tendency of different superalloys by using its platform length of stray formation occurring first in time. The second model sample with the same platform length but height decreasing by degrees along the solidification direction, is used to quantitatively characterize this tendency by using the platform height of stray formation occurring first in time. The experimental results show that it is easier for stray grains to nucleate and grow within the platform region with either platform length increasing or platform height reducing. The stray grain formation within outside platform is prior to that within inside platform. This tendencies for the first, second and third generation SC superalloys, however, are different: the first is the weakest, following by the second, and the third is the strongest. Furthermore, the formation of stray grains is dominated by undercooling. The melt undercooling at platform edges is larger than within platform insides and increases gradually with either platform length lengthening or platform height reducing. When the undercooling at platform edges exceeds the critical nucleation undercooling, the stray grain would be able to nucleate and overgrow quickly into the platform insides.

Key wordsNi–based superalloy    directional solidification    stray grain    undercooling
收稿日期: 2012-05-09     
基金资助:

国家自然科学基金项目U1037601和50931004, 国家重点基础研究发展计划项目2010CB631206和中国科学院“百人计划”项目资助

作者简介: 张小丽, 女, 1984年生, 博士生

[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 141

[2] Schafrik R E, Walston S. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008. Warrendale, PA: TMS, 2008: 3

[3] McLean M. Directionally Solidified Materials for High Temperature Service. London: The Metals Society, 1983: 161

[4] Shalin R E, Svetlov I L, Kachanov E B, Toloraiia V N, Gavrilin O S. Single Crystals of Nickel Superalloys. Moscow: Mocshinostroeniye, 1997: 336

[5] Fullagar K P L, Broomfield R W, Hulands M, Harris K, Erickson G L, Sikkenga S L. Trans ASME, 1996; 118: 380

[6] Goulette M J, Spilling P O, Arthey R P. In: Gill M, Kortovich C S, Briknell R H, Kent W B, Radavich J F, eds., Proc 5th International Symposium on Superalloys, Warrendale,

PA: TMS, 1984: 167

[7] de Bussac A, Gandin C A. Mater Sci Eng, 1997; A237: 35

[8] Goldschmidt D, Paul U, Sahm P R. In: Antolovich S D, Stusrud RW, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom eds., Superalloys 1992. Warrendale, PA:

TMS, 1992: 155

[9] Napolitano R E, Schaefer R J. Mater Sci, 2000; 35: 1641

[10] Bussac A D, Gandin C A. Mater Sci Eng, 1997; A237: 35

[11] Yang X L, Dong H B, Wang W, Lee P D. Mater Sci Eng, 2004; A386: 129

[12] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P. Metall Mater Trans, 1996; 27A: 695

[13] Gandin C A, Schaefer R J, Rappaz M. Acta Mater, 1996; 44: 3333

[14] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds.,

Superalloys 1992. Warrendale, PA: TMS, 1992: 125

[15] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081

[16] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953

[17] Gu J P, Beckermann C, Giamei A. Metall Mater Trans, 1997; 28A: 1533

[18] Copley S M, Giamei A F, Johnson S M, Hornbecker M F. Metall Trans, 1970; 1: 2193

[19] Zhou Y Z. Scr Mater, 2011; 65: 281

[20] D’Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, McLean M. Metall Mater Trans, 2005; 36B: 657

[21] D’Souza N, Ardakani M G, McLean M, Shollock B A. Metall Mater Trans, 2000; 31A: 2877

[22] Napolitano R E, Schaefer R J. J Mater Sci, 2000; 35: 1641

[23] Meyer ter Vehn M, Dedecke D, Paul U, Sahm P R. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996.

Warrendale, PA: TMS, 1996: 471

[24] Cockcroft S L, Rappaz M, Mitchell A, Fernihough J, Schmalz A. In: Coutsouradis D, Davidson J H, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft D B, Regis

V, Scarlin R B, Schubert F, Thornton D V. Proc Materials for Advanced Power Engineering, Liege: Kluwer Academic publishers, 1994: 1145

[25] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications, 1984: 21

[26] Ma D X, Buhrig–Polaczek A. Metall Mater Trans, 2009; 40B: 738

[27] Paul U, Sahm P R. Mater Sci Eng, 1993; A173: 49

[28] Paul U, Sahm P R, Donner A, Goldschm D, Portella P D. Proc 2nd Symposium Materialforschung. Dresden: TUV Rheinland, k¨oln, 1991: 841

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.