Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 889-894    DOI: 10.3724/SP.J.1037.2012.00089
  论文 本期目录 | 过刊浏览 |
Mg-La和Mg-Nd二元合金相稳定性的第一原理研究
张会, 王绍青
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS
ZHANG Hui, WANG Shaoqing
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张会 王绍青. Mg-La和Mg-Nd二元合金相稳定性的第一原理研究[J]. 金属学报, 2012, 48(7): 889-894.
, . FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS[J]. Acta Metall Sin, 2012, 48(7): 889-894.

全文: PDF(724 KB)  
摘要: La和Nd是镁合金中常用的稀土添加元素, 为了帮助理解它们在Mg合金中的强化机制, 应用第一原理计算方法, 研究了Mg-La和Mg-Nd二元合金的相稳定性. 计算结果表明, Mg-La和Mg-Nd合金在Mg12RE和Mg3RE之间的平衡相分别为Mg17La2和Mg41Nd5; La和Nd在Mg中的溶解度大小差别较大, 表明二者在镁合金中产生强化的机理不同; Mg3Nd具有比Mg12La更大的弹性模量, 因而具有更好的强化效果.
关键词 第一原理镁合金稀土元素    
Abstract:The applications of magnesium alloys in automobile industry are limited by their poor high-temperature creep resistance, which can be effectively improved by rare earth (RE) elements addition. In general, rare earth elements are introduced as mixtures of various kinds of metals, and all of the elements are considered to behave in the same way. In practice, various rare earth elements may act differently in magnesium alloys. La and Nd are the two elements usually added to magnesium alloys. In this paper, first-principles calculations are made to investigate the phase stability of Mg-La and Mg-Nd binary alloy systems. In addition, the solubility of La and Nd in Mg is discussed and the elastic constants of the strengthening phases in Mg-La and Mg-Nd alloys are calculated. The equilibrium phases between Mg12RE and Mg3RE are Mg17La2 and Mg41Nd5 for Mg-La and Mg-Nd systems respectively. The difference of calculated solubility for La and Nd in Mg indicates the distinct strengthening mechanism for these two alloy systems. Mg3Nd is predicted to have larger elastic moduli and a better strengthening effect than Mg$_{12}$La.
Key wordsfirst-principles    magnesium alloy    rare earth element
收稿日期: 2012-02-21     
ZTFLH: 

TG146.2+2

 
基金资助:

国家重点基础研究发展计划项目2011CB606403和中国科学院“十一五”信息化专项“超级计算环境建设与应用”项目INFO-115-B01资助

作者简介: 张会, 男, 1983年生, 博士生
[1] Agnew S R, Nie J F. Scr Mater, 2010; 63: 671

[2] Luo A A. Int Mater Rev, 2004; 49: 13

[3] Chia T L, Easton M A, Zhu S M, Gibson M A, Birbilis N, Nie J F. Intermetallics, 2009; 17: 481

[4] Zhu S M, Gibson M A, Easton M A, Nie J F. Scr Mater, 2010; 63: 698

[5] Guo C P, Du Z M. J Alloys Compd, 2004; 385: 109

[6] Massalski T B. J Phase Equilib, 1991; 12: 2

[7] Berche A, Benigni P, Rogez J, Record M C. CALPHAD, 2011; 35: 580

[8] Berche A, Benigni P, Rogez J, Record M C. J Therm Anal, 2012; 107: 797

[9] Delfino S, Saccone A, Ferro R. Metall Trans, 1990; 21A: 2109

[10] Wu A R, Xia C Q. Mater Des, 2007; 28: 1963

[11] Kohn W, Sham L J. Phys Rev, 1965; 140: 1133

[12] Shin D, Woverton C. Scr Mater, 2010; 63: 680

[13] Kresse G, Hafner J. Phys Rev, 1994; 49B: 14251

[14] Kresse G, Furthm¨uller J. Comput Mater Sci, 1996; 6: 15

[15] Kresse G, Furthm¨uller J. Phys Rev, 1996; 54B: 11169

[16] Bl¨ochl P E. Phys Rev, 1994; 50B: 17953

[17] Kresse G, Joubert J. Phys Rev, 1999; 59B: 1758

[18] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865

[19] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188

[20] Berche A, Marinelli F, Rogez J, Record M C. Thermochim Acta, 2010; 499: 65

[21] Wang Y F, Zhang W B, Wang Z Z, Deng Y H, Yu N, Tang B Y, Zeng X Q, Ding W J. Comput Mater Sci, 2007; 41: 78

[22] Syassen K, Holzapfel W B. Solid State Commun, 1975; 16: 533

[23] Wr´obel J, Hector J L G, Wolf W, Shang S L, Liu Z K, Kurzydlowski K J. J Alloys Compd, 2012; 512: 296

[24] Tao X M, Ouyang Y F, Liu H S, Feng Y P, Du Y, He Y H. J Alloys Compd, 2011; 509: 6899

[25] Zhang H, Wang S Q. J Mater Res, 2011; 25: 1689

[26] Togo A, Oba F, Tanaka I. Phys Rev, 2008; 78B: 134106

[27] Parlinski K, Li Z Q, Kawazoe Y. Phys Rev Lett, 1997; 78: 4063

[28] Hehmann E, Sommer E, Predel B. Mater Sci Eng, 1990; A125: 249

[29] Ganeshan S, Shang S L, Zhang H, Wang Y, Mantina M, Liu Z K. Intermetallics, 2009; 17: 313

[30] Ganeshan S, Shang S L, Wang Y, Liu Z K. Acta Mater, 2009; 57: 3876

[31] Beckstein O, Klepeis J E, Hart G L W, Pankratov O. Phys Rev, 2001; 63B: 134112

[32] Wang S Q, Ye H Q. J Phys, 2003; 15: 5307

[33] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400

[34] Chung D H, Dunegan H L, Henderson G W. J Appl Phys, 1967; 38: 5104

[35] Stassis C, Smith G S, Harmon B N, Ho K M, Chen Y. Phys Rev, 1985; 31B: 6298

[36] Greiner J D, Schlader D M, McMasters O D, Gschneidner K A, Smith J F. J Appl Phys, 1976; 47: 3427

[37] Lenkkeri J T, Palmer S B. J Phys, 1977; 7F: 15
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[12] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[13] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[14] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[15] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.