Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1513-1519    DOI: 10.3724/SP.J.1037.2011.00364
  论文 本期目录 | 过刊浏览 |
多道次热轧对包层钢筋性能及结合面的影响
谢红飙,高亚男,王涛,肖宏
燕山大学机械工程学院, 秦皇岛 066004
EFFECT OF MULTIPASS HOT ROLLING ON THE PROPERTY AND BONDING INTERFACE OF CLAD BAR
XIE Hongbiao, GAO Yanan, WANG Tao, XIAO Hong
Mechanical Engineering College, Yanshan University, Qinhuangdao 066004
引用本文:

谢红飙 高亚男 王涛 肖宏. 多道次热轧对包层钢筋性能及结合面的影响[J]. 金属学报, 2011, 47(12): 1513-1519.
, , , . EFFECT OF MULTIPASS HOT ROLLING ON THE PROPERTY AND BONDING INTERFACE OF CLAD BAR[J]. Acta Metall Sin, 2011, 47(12): 1513-1519.

全文: PDF(905 KB)  
摘要: 采用热轧的方式制备了不锈钢/碳钢包层钢筋, 研究了包层钢筋的机械性能及界面的结合情况. 通过拉伸、剪切实验测试了钢筋的抗拉强度等性能及两金属的结合强度. 应用OM, SEM, EDS以及显微硬度仪对界面附近的显微形貌、元素扩散以及显微硬度分布进行分析. 实验结果显示:不锈钢/碳钢包层钢筋的轧制过程中双金属等比例延伸,其抗拉强度高达550 MPa, 延伸率45%, 拉伸过程中出现明显缩颈,断口处两金属未分离. 随轧制道次的增加, 金属结合更加致密, 剪切强度增加, 最大剪切强度为333 MPa, 剪切断裂面出现典型的塑性韧窝和剪切滑移. 界面附近出现了明显的元素扩散, 不锈钢中的Cr, Mn和Ni等元素向碳钢扩散, 碳钢中的Fe元素向不锈钢扩散,总扩散距离约30 μm, 造成界面附近碳钢侧的显微硬度显著增大,第6道次后其值为399.4 HV, 远高于碳钢基体的硬度.复合包层钢筋界面间形成了良好的冶金扩散结合.
关键词 包层钢筋 热轧 结合界面 扩散    
Abstract:Because of climate and human factors, the corrosion of reinforced steel bar has become one of the important reasons of premature deterioration of concrete buildings and infrastructure. Stainless steel bar cannot be widely used due to its high price. Therefore, stainless steel clad carbon steel bar comes into being. It is a new material used in construction, which is made up of corrosion resistant stainless steel outer layer and carbon steel core. In the present study, an experimental study was conducted to investigate the mechanical property and bonding state of stainless steel clad carbon steel bar. The tensile strength of clad bar and bonding strength of two metals were measured using tension test and shearing test. Then, microscopic morphology, element diffusion and microhardness near the interface were analyzed using OM, SEM, EDS and microhardness tester. The results show that the two metals of the bar extend proportionally in the rolling process. The tensile strength is 550 MPa and the percentage of elongation is 45%. The neck phenomenon in the tensile experiment is obvious and the two metals are undivided in the fracture. With the increment of rolling pass, the bonding between the metals becomes denser and this increases the shearing strength. The max shearing strength is 333 MPa and the typical plastic dimples and shearing slip were observed on the shearing fracture surface.  Element diffusion occurs at the interface where the Cr, Mn, Ni of stainless steel diffuse into carbon steel and the Fe of carbon steel diffuses into stainless steel, and the total width of diffusion distance is about 30 μm. It makes the microhardness of the carbon steel near the interface increased significantly and the value is 399.4 HV which is higher than carbon steel after sixth pass rolling. Therefore, the metallurgical diffusion bonding is formed in the interface of clad bar.
Key wordsclad bar    hot rolling    bonding interface    diffusion
收稿日期: 2011-06-10     
基金资助:

国家自然科学基金项目51075353 和河北省自然科学基金项目E2010001208资助

作者简介: 谢红飙, 男, 1970年生, 副教授, 博士
[1] Hwang Y M, Hsu H H, Hwang Y L. Int J Mech Sci, 2000; 42: 2417

[2] Kang H, Kim J, Huh M, Engler O. Mater Sci Eng, 2007; A452–453: 347

[3] Lee J, Bae D, Chung W, Kim K, Cho Y. J Mater Process Technol, 2007; 187–188: 546

[4] Soltanalinezhad M, Haerianardakani A. Mater Des, 2009; 30: 1103

[5] Zhang L, Meng L, Zhou S P, Yang F T. Mater Sci Eng, 2004; A371: 65

[6] Bulent K. J Mater Process Technol, 2007; 190: 138

[7] Motarjemi A K, Korcak M, Ventzke V. Int J Pres Ves Pip, 2002; 79: 181

[8] Li S X, Xuan F Z, Tu S T. J Nucl Mater, 2007; 366(1/2): 1

[9] Madaah–Hosseini H R, Kokabi A H. Mater Sci Eng, 2002; A335: 186

[10] Kundu S, Chatterjee S. Mater Sci Eng, 2006; A425(1/2): 107

[11] He P, Yue X, Zhang J. Mater Sci Eng, 2008; A486: 171

[12] Elrefaey A, Tillmann W. J Mater Process Technol, 2009; 209: 2746

[13] Wu C J, Wu Y, Xue Z Y, Liang H, Liu Q. Acta Metall Sin (Engl Lett), 2010; 23: 206

[14] Lesik L, Dyja H, Pilarczyk J W, Wiewiorowska S. Wire J Int, 2001; 34(2): 94

[15] Dyja H, Lesik L, Milenin A, Mroz S. J Mater Process Technol, 2002; 125–126: 731

[16] Berski S, Dyja H, Maranda A, Nowaczewski J, Banaszek G. J Mater Process Technol, 2006; 177: 582

[17] Manesh H, Taheri A. J Mater Process Technol, 2005; 166: 163

[18] Yuan J W, Pang Y H, Li T. J Wuhan Univ Technol, 2011; 26: 111

[19] Dyja H, Mroz S, Milenin A, Lesik L. In: International Rolling Conference ed., 44th MWSP Conference Proceeding, Orlando: Association for Iron & Steel, 2002: 40: 653

[20] Dyja H, Mroz S, Stradomski Z. Metalurgija, 2003; 42(3): 185

[21] Dyja H, Mroz S, Milenin A. J Mater Process Technol, 2004; 153–154: 100

[22] Szota P, Dyja H. J AMME, 2007; 25(1): 55

[23] Mroz S, Szota P, Dyja H, Kawalek A. Metalurgija, 2011; 50(2): 85

[24] Ricardo R. Master Dissertation, Massachusetts Institute of Technology, Cambridge, 2001

[25] Purk Y. Master Dissertation, North Carolina State University, Raleigh, 2003

[26] Gregory W. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 2007
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[9] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[12] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[13] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[15] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.