Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1464-1469    DOI: 10.3724/SP.J.1037.2011.00346
  论文 本期目录 | 过刊浏览 |
Al-11.80Cu-24.22Mg三元包共晶合金的凝固机制
闫二虎1), 李新中1), 徐达鸣1), 赵光伟1), 周建新2), 郭景杰1), 傅恒志1)
1) 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
2) 华中科技大学模具技术国家重点实验室, 武汉 430074
SOLIDIFICATION MECHANISM OF TERNARY QUASIPERITECTIC ALLOY OF Al-11.8Cu-24.22Mg
YAN Erhu1), LI Xinzhong1), XU Daming1), ZHAO Guangwei1), ZHOU Jianxin2), GUO Jingjie1), FU Hengzhi1)
1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2) State Key Lab of Mold & Die Technology, Huazhong University of Science and Technology, Wuhan 430074
引用本文:

闫二虎 李新中 徐达鸣 赵光伟 周建新 郭景杰 傅恒志. Al-11.80Cu-24.22Mg三元包共晶合金的凝固机制[J]. 金属学报, 2011, 47(11): 1464-1469.
, , , , , . SOLIDIFICATION MECHANISM OF TERNARY QUASIPERITECTIC ALLOY OF Al-11.8Cu-24.22Mg[J]. Acta Metall Sin, 2011, 47(11): 1464-1469.

全文: PDF(2619 KB)  
摘要: 采用液淬方法对Al-11.80Cu-24.22Mg(质量分数, %)三元包共晶合金在不同温度下淬火, 而后, 对其相组成和凝固组织进行了研究, 对凝固组织的演化规律以及凝固机制进行了分析. 实验结果表明, 该合金凝固过程中确实发生了三元包共晶反应, 初生相为S相 (Al2CuMg), 包共晶组织为α-Al相和T相(Al6CuMg4)组成, 最终凝固组织由残余初生S相、包共晶组织 (α-Al+T)、两相共晶(α-Al+T)及三相共晶(α-Al+T+β)组成; 虽然包共晶组织中和两相共晶中含有相同的相, 即α-(Al)相和T相, 但二者的组织形态不同, 包共晶组织呈“条带状”, 而两相共晶呈规则的 “蛛网状”和“球状”. 此外, 三元包共晶反应时, 包共晶组织依附于初生S相的周围生长, 随着冷却速率的增加, 三元包共晶反应变慢甚至被抑制, 致使初生S相剩余而滞留在基体中.
关键词 三元包共晶液淬组织演化凝固机制    
Abstract:In the field of condensed matter physics and materials science, it is of great importance to investigate the microstructures, properties and solidification regularities of liquid metals. In the last few decades, the theories of solidification of binary alloys, such as dendritic growth and eutectic growths have been built. Great progress has also been made on the study of monetectic and peritectic alloys. But a solidification theory on ternary quasiperitectic alloys has not been established up to now. The study of the solidification process of quasiperitectic alloys will provide a basic work for solidification theories of ternary alloys.
The master alloy of Al-11.8Cu-24.22Mg was prepared from pure Al (99.99%), pure Mg (99.99%) and Al-54.2Cu in a resistance furnace under CO2 and SF6 (volume proportion is 40∶1) atmosphere. The melted alloy (840-850℃) was pouring into different quenching graphite crucibles at the same time, and the cooling curves were recorded by a sixteen channels temperature recorder. The graphite crucible was quenched into cold--water immediately for rapid cooling at the preplanned quenching temperature. After the experiment, the microstructures of the sample were analyzed by SEM, with EDS analysis.
The experiment result indicates that the primary phase is identified as S (Al2CuMg) and the quasiperitectic phases are α-Al and T (Al6CuMg4). The solidification microstructure is composed of remnant primary phase, quasiperitectic phases, binary eutectic and ternary eutectic. Although the quasiperitectic phases and binary eutectic are composed of the same phases (α-Al+T(Al6CuMg4)), their structures are different. The former structure presents strip form and the later present dendritic form. The ternary eutectic reaction is suppressed and the remnant primary S phase is reserved in the matrix with non-equilibrating crystallization.
Key wordsternary quasiperitectic    quenching techniques    microstructure evolution    solidification mechanism
收稿日期: 2011-06-02     
ZTFLH: 

TG249.9

 
基金资助:

国家自然科学基金项目51071062和50801019, 华中科技大学模具技术国家重点实验室开放基金项目2011-P03及国家重点基础发展计划项目2011CB610406资助

作者简介: 闫二虎, 男, 1986年生, 博士生
[1] Li L, Lu X Y, Dai F P. Foundry Technol, 2008; 29: 601

(李丽, 鲁晓宇, 代富平. 铸造技术, 2008; 29: 601)

[2] Lipton J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[3] Trivedi R, Lipton J, Kurz W. Acta Metall, 1987; 35: 965

[4] Jackson K, Hunt J. Trans AIME, 1966; 236: 1129

[5] Kurz W, Fisher D J. Acta Metall, 1980; 28: 777

[6] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971

[7] Hillig W B, Mccarroll B. J Chem Phys, 1966; 45: 3887

[8] Wang N, Wei B. Mater Sci Eng, 2003; A345: 145

[9] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129

[10] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[11] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Acta Mater, 2009; 57(4): 941

[12] Sha G, Reilly K A Q O, Cantor B, Tichmarsh J M, Hamerton R G. Acta Mater, 2003; 51: 1883

[13] Raghavan V. JPEDAV, 2007; 28: 174

[14] Chen Z M. J Shandong Inst Technol, 2001; 15(3): 25

(陈宗明. 山东工程学院学报, 2001; 15(3): 25)

[15] Li L, Lu X Y, Cao C D, Dai F P. Chin Sci Bull, 2009; 54: 2108

(李丽, 鲁晓宇, 曹崇德, 代富平. 科学通报, 2009; 54: 2108)

[16] Fan L, Lu X Y, Dai F P. Foundry, 2010; 59: 775

(范龙, 鲁晓宇, 代富平. 铸造, 2010; 59: 775)

[17] Lewis D J. PhD Thesis, Bethlehem: Lehigh University, 2000: 1

[18] Snugovsky L, Snugovsky P, Perovic D D. Mater Sci Technol, 2008; 24: 245

[19] Ruan Y, Wei B. Sci China, 2007; 50G: 563

[20] Li J G, Mao X M, Fu H Z, Shi Z X. Mater Sci Prog, 1991; 5: 461

(李建国, 毛协民, 傅恒志, 史正兴. 材料科学进展, 1991; 5: 461)

[21] Zhou G, Wang W H, Li Y Y. Acta Metall Sin, 2000; 36: 478

(周刚, 王文皓, 李依依. 金属学报, 2000; 36: 478)

[22] Xu H S. Aerospace Mater Technol, 1997; 6: 41

(徐禾水. 宇航材料工艺, 1997; 6: 41)

[23] Yan X Y. PhD Thesis, Madison: University of Wisconsin–Madison, 2001
[1] 马宗义, 商乔, 倪丁瑞, 肖伯律. 镁合金搅拌摩擦焊接的研究现状与展望[J]. 金属学报, 2018, 54(11): 1597-1617.
[2] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[3] 安金岚,王磊,刘杨,胥国华,赵光普. 长期时效对GH4169合金组织演化及低周疲劳行为的影响*[J]. 金属学报, 2015, 51(7): 835-843.
[4] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[5] 孙文, 秦学智, 郭建亭, 楼琅洪, 周兰章. (W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响[J]. 金属学报, 2015, 51(1): 67-76.
[6] 孙文, 秦学智, 郭永安, 郭建亭, 楼琅洪, 周兰章. Nb/Ti比对铸造镍基高温合金长期时效组织演化的影响*[J]. 金属学报, 2014, 50(6): 744-752.
[7] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[8] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[9] 彭鹏,李新中,刘冬梅,苏彦庆,郭景杰,傅恒志. 定向凝固Al-12%Ni过共晶合金组织演化[J]. 金属学报, 2013, 49(3): 311-319.
[10] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.
[11] 韩国民 韩志强 霍亮 段军鹏 朱训明 柳百成. 考虑固溶及时效处理的镁合金铸件微观组织模拟及力学性能预测[J]. 金属学报, 2012, 48(3): 363-370.
[12] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[13] 姚志浩 王秋雨 张麦仓 董建新. GH738高温合金热变形过程显微组织控制与预测 II.组织演化模型验证与应用[J]. 金属学报, 2011, 47(12): 1591-1599.
[14] 张姝 田素贵 于慧臣 苏勇 于兴福 于莉丽. [011]取向镍基单晶合金在拉伸蠕变期间的组织演化与有限元分析[J]. 金属学报, 2011, 47(1): 61-68.
[15] 满蛟 张骥华 戎咏华. 马氏体相变中应变自协调效应的三维相场研究[J]. 金属学报, 2010, 46(7): 775-780.