Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 363-370    DOI: 10.3724/SP.J.1037.2011.00586
  论文 本期目录 | 过刊浏览 |
考虑固溶及时效处理的镁合金铸件微观组织模拟及力学性能预测
韩国民1), 韩志强1), 霍亮1), 段军鹏2), 朱训明2), 柳百成1, 3)
1) 清华大学机械工程系, 先进成形制造教育部重点实验室, 北京 100084
2) 威海万丰镁业科技发展有限公司, 威海 264209
3) 清华大学汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084
MICROSTRUCTURE SIMULATION AND MECHANICAL PROPERTY PREDICTION OF MAGNESIUM ALLOY CASTING CONSIDERING SOLID SOLUTION AND AGING PROCESS
HAN Guomin1), HAN Zhiqiang1), HUO Liang1), DUAN Junpeng2), ZHU Xunming2), LIU Baicheng1, 3)
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) Wanfeng Magnesium Co. Ltd., Weihai 264209
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084
引用本文:

韩国民 韩志强 霍亮 段军鹏 朱训明 柳百成. 考虑固溶及时效处理的镁合金铸件微观组织模拟及力学性能预测[J]. 金属学报, 2012, 48(3): 363-370.
, , , , , . MICROSTRUCTURE SIMULATION AND MECHANICAL PROPERTY PREDICTION OF MAGNESIUM ALLOY CASTING CONSIDERING SOLID SOLUTION AND AGING PROCESS[J]. Acta Metall Sin, 2012, 48(3): 363-370.

全文: PDF(2855 KB)  
摘要: 基于改进元胞自动机(CA)模型, 综合考虑铸造、固溶处理和时效处理过程中的微观组织转变, 建立了镁合金铸件微观组织演化模型; 在分析Mg-Al系镁合金第二相析出过程和强化机理的基础上, 建立了镁合金铸件力学性能模型; 针对镁合金汽车轮毂, 采用建立的模型, 模拟预测了铸件关键部位的微观组织演化和力学性能. 结果表明, 铸态和固溶处理条件下屈服强度的预测值与实际测量平均值吻合较好, 而时效处理状态下的预测值与实测平均值有一定差别, 抗拉强度的模拟预测值与实际测量的平均值吻合较好.
关键词 镁合金微观组织演化模型力学性能模型汽车轮毂    
Abstract:A microstructure model was established for simulating the microstructure evolution during casting, solid solution and aging process of magnesium alloy casting based on the modified cellular automaton (CA) model. A mechanical property model taking into account the second phase precipitation and strengthening mechanism was developed for Mg-Al alloy. The established models were applied to simulate the microstructure evolution and predict the mechanical properties of a magnesium alloy automobile wheel casting. The results show that the predicted tensile strength is in good agreement with the average measurements, and the predicted yield strength is in good  agreement with the average measurements under as-cast and solid solution state, while there are some discrepancies between the predicted and measured yield strengths under aging state.
Key wordsmagnesium alloy    microstructure evolution model    mechanical property model    automobile wheel casting
收稿日期: 2011-09-17     
基金资助:

国家自然科学基金项目51175291, 清华大学自主科研计划及国家科技部国际科技合作计划课题2010DFA72760资助

作者简介: 韩国民, 男, 1983年生, 博士生
[1] Fribourg G, Brechet Y, Deschamps A, Simar A. Acta Mater, 2011; 59: 3621

[2] Smoljan B, Iljki´c, D, Tomaˇsi´c N. J Achiev Mater Manuf Eng, 2010; 40: 155

[3] Panuˇskov´a M, Tillov´a E, Chalupov´a M. Strength Mater, 2008; 40: 98

[4] Liu Z Y, Xu Q Y, Liu B C. Acta Metall Sin, 2007; 43: 367

(刘志勇, 许庆彦, 柳百成. 金属学报, 2007; 43: 367)

[5] Huo L, Han Z Q, Liu B C. Acta Metall Sin, 2009; 45: 1414

(霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)

[6] Huo L, Han Z Q, Liu B C. In: Agnew S, Neelameggham N R, Nyberg E A eds., Magnesium Technology 2010. Warrendale, PA: The Minerals, Metals and Materials Society, 2010: 601

[7] Yin H B, Felicelli S D. Modell Simul Mater Sci Eng, 2009; 17: 1

[8] Huo L. PhD Thesis, Tsinghua University, Beijing, 2011

(霍亮. 清华大学博士学位论文, 北京, 2011)[9] Maltais A, Dub´e D, FisetM, Laroche G, Turgeon S. Mater Charact, 2004; 52: 103

[10] Deschamps A, Brechet Y. Acta Mater, 1998; 47: 293

[11] Celotto S. Acta Mater, 2000; 48: 1775

[12] Gharghouri M A, Weatherly G C, Embury J D, Root J. Philos Mag, 1999; 79A: 1671

[13] Volmer M, Weber A. Phys Chem, 1926; 119: 277

[14] Becker R, Doring W. Ann Phys, 1935; 24: 719

[15] Zeldovich J B. Acta Physicochim, 1943; 18: 1

[16] Hillert M, Hoglund L, Agren J. Acta Mater, 2003; 51: 2089

[17] Lifshitz I, Slyozova V. J Phys Chem Solids, 1961; 19: 35

[18] Wagner C Z. Elektrochem, 1961; 65: 581

[19] Voorhees P W. Annu Rev Mater Sci, 1992; 22: 197

[20] Hutchinson C R, Nie J F, Gorsse S. Metall Mater Trans, 2005; 36A: 2093

[21] C´aceres C H, Davidson C J, Griffiths J R, Newton C L. Mater Sci Eng, 2002; A325: 344

[22] Akhtar A, Teghtsoonian E. Acta Metall, 1969; 17: 1339

[23] Akhtar A, Teghtsoonian E. Philos Mag, 1972; 25: 897

[24] Lukac P. Phys Status Solidi, 1992; 131A: 377

[25] Nussbaum G, Sainfort P, Regazzoni G, Gjestland H. Scr Metall, 1989; 23: 1079

[26] Shaw C, Jones H. Mater Sci Eng, 1997; A226: 856

[27] C´aceres C, Rovera D. J Light Met, 2001; 1: 151

[28] Hall E O. Proc Phys Soc Lond, 1951; 64B: 747

[29] Petch N J. J Iron Steel Inst, 1953; 174: 25

[30] Hauser F E, Landon P R, Dorn J E. Trans Am Inst Mining Metall Eng, 1956; 206: 589

[31] Brown L M, Ham P K. Strengthening Methods in Crystals. London: Elsevier, 1971: 10

[32] Miller W S, Humphreys F J. Scr Metall, 1991; 25: 33

[33] Armstrong R, Douthwaite R M, Codd I, Petch N J. Philos Mag, 1962; 7: 45

[34] Leroy G, Embury J D, Edward G, Ashby MF. Acta Metall, 1981; 29: 1509

[35] Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1185

[36] Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1201

[37] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821

[38] Lemaitre J, Chaboche J L. Mechanics of Solid Materialsrm. Cambridge: Cambridge University Press, 1990: 167
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[10] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[11] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[13] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[15] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.