Please wait a minute...
金属学报  2011, Vol. 47 Issue (6): 751-756    DOI: 10.3724/SP.J.1037.2011.00023
  论文 本期目录 | 过刊浏览 |
热老化对Z3CN20-09M不锈钢微区力学性能和冲击断裂行为的影响
李时磊, 王西涛, 王艳丽, 李树肖
北京科技大学新金属材料国家重点实验室, 北京 100083
EFFECTS OF THERMAL AGING ON MICRO–MECHANICAL PROPERTIES AND IMPACT FRACTURE BEHAVIOR OF Z3CN20–09M STAINLESS STEELS
LI Shilei, WANG Xitao, WANG Yanli, LI Shuxiao
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

李时磊 王西涛 王艳丽 李树肖. 热老化对Z3CN20-09M不锈钢微区力学性能和冲击断裂行为的影响[J]. 金属学报, 2011, 47(6): 751-756.
, , , . EFFECTS OF THERMAL AGING ON MICRO–MECHANICAL PROPERTIES AND IMPACT FRACTURE BEHAVIOR OF Z3CN20–09M STAINLESS STEELS[J]. Acta Metall Sin, 2011, 47(6): 751-756.

全文: PDF(1388 KB)  
摘要: 通过纳米力学探针对铁素体相在热老化过程中的力学性能变化进行了研究.采用仪器化冲击试验机研究了材料的冲击行为, 使用SEM观察冲击断口形貌.结果表明: 长期热老化导致铁素体相的塑性变形能力不断下降,材料的冲击韧性也显著下降. 热老化过程中冲击功的损失主要是由于裂纹扩展能量的降低引起,在400℃热老化1×104 h后裂纹稳定扩展能几乎降为0.热老化材料的冲击断裂过程为: 在冲击载荷下裂纹首先在铁素体内萌生并快速扩展,铁素体相发生解理断裂, 裂纹扩展到奥氏体相, 最后裂纹连接贯穿整个试样
关键词 Z3CN20-09M不锈钢 热老化 冲击 断裂行为 力学性能    
Abstract:Cast austenite stainless steels (CASS) were used in the primary circuit piping of pressurized water nuclear reactors (PWRs), because of their excellent strength, corrosion resistance and good weldability. However, after long–term service at mid–temperature, CASS would suffer a loss of toughness and Charpy impact energy due to thermal aging. The micro–mechanical properties and impact fracture behavior of Z3CN20–09M stainless steel after long–term thermal aging at intermediate temperature were studied in this paper. A nano–indenter was used to study the changes of mechanical properties in the ferrite phases during the aging process. The impact behavior of the aged material was investigated by an instrumented impact tester, and the impact fractures were observed with SEM. The results indicated that long–term thermal aging caused the declining plastic deformation ability of the ferrite phases and the decrease of the impact toughness. The loss of impact energy in the aging process was mainly due to the reduction of stable crack propagation energy. The impact fracture morphology chnged from ductile dimple in the initial stage into a mixture of cleavage in ferrite alonwith tearing in austenite in the later stage. In the impact fracture process, cracks initiated firstly in the errite phases and fast propagated under impact loading, and then the ferrite phases fractured along the cleavage planes. At last, the cracks extended to the austenite phases and the cracks connected through the specimen.
Key wordsZ3CN20-09M stainless steel    thermal aging    impact    fracture behavior    mechanical property
收稿日期: 2011-01-11     
ZTFLH: 

TG142.71

 
基金资助:

国家高技术研究发展计划资助项目2008AA031702

作者简介: 李时磊, 男, 1982年生, 博士生
[1] Chung H M. Int J Pressure Vessels Piping, 1992; 50: 179

[2] Kawaguchi S, Sakamoto N, Takano G, Matsuda F, Kikuchi Y, Mraz L. Nucl Eng Des, 1997; 174: 273

[3] Yamada T, Okano S, Kuwano H. J Nucl Mater, 2006; 350: 47

[4] Pumphrey P H, Akhurst K N. Mater Sci Technol, 1990; 6: 211

[5] Chung H M, Leax T R. Mater Sci Technol, 1990; 6: 249

[6] Hilders O A, S´aenz L, Ramos M, Pe˜na N D. J Mater Eng Perform, 1999; 8: 87

[7] Vrinat M, Cozar R, Meyzaud Y. Scr Mater, 1986; 20: 1101

[8] Bonnet S, Bourgoin J, Champredonde J, Guttmann D, Guttmann M. Mater Sci Technol, 1990; 6: 221

[9] Hale G E, Garwood S J. Mater Sci Technol, 1990; 6: 230

[10] Miller M K, Bentley J. Mater Sci Technol, 1990; 6: 285

[11] Danoix F, Auger P, Blavette D. Microsc Microanal, 2004; 10: 349

[12] Mathew M D, Lietzan L M, Murty K L, Shah V N. Mater Sci Eng, 1999; A269: 186

[13] Okano S, Kuwano H. J Nucl Mater, 2006; 350: 47

[14] Bethmont M, Meyzaud Y, Soulat P. Int J Pressure Vessels Piping, 1996; 65: 211

[15] Gonz´alez J, Guti´errez–Solana F, S´anchez L, Seti´en J. J Test Eval, 1997; 25: 154

[16] Hideya A, Jiro K Y, Isao M O. Trans Iron Steel Inst Jpn, 1988; 28: 401

[17] Metallic materials–Instrumented indentation test for hardness and materials parameters—Part 1: Test method. ISO 14577–1

[18] Steel—Charpy V–notch pendulum impact test—Instrumented test method. ISO 14556

[19] Li S L, Wang Y L, Li S X, Wang X T. Acta Metall Sin, 2010; 46: 1186

(李时磊, 王艳丽, 李树肖, 王西涛. 金属学报, 2010; 46: 1186)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.