Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 157-162    DOI: 10.3724/SP.J.1037.2010.00390
  论文 本期目录 | 过刊浏览 |
Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响
杨军1), 贺志荣1), 王芳2), 王永善1)
1) 陕西理工学院材料科学与工程学院, 汉中 723003
2) 陕西理工学院图书馆, 汉中 723003
EFFECT OF Cr ADDITION ON TRANSFORMATION AND CYCLIC DEFORMATION CHARACTERISTICS OF Ti-Ni SHAPE MEMORY ALLOY
YANG Jun1),  HE Zhirong1),  WANG Fang2),  WANG Yongshan1)
1) School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
2) Library, Shaanxi University of Technology, Hanzhong 723003
引用本文:

杨军 贺志荣 王芳 王永善. Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响[J]. 金属学报, 2011, 47(2): 157-162.
, , , , , . EFFECT OF Cr ADDITION ON TRANSFORMATION AND CYCLIC DEFORMATION CHARACTERISTICS OF Ti-Ni SHAPE MEMORY ALLOY[J]. Acta Metall Sin, 2011, 47(2): 157-162.

全文: PDF(1715 KB)  
摘要: 使用示差扫描量热仪(DSC)和拉伸实验研究了Cr掺杂对550℃退火态Ti-50.8Ni(原子分数, %)形状记忆合金相变和循环形变特性的影响. 结果表明, Ti-50.8Ni合金冷却/加热时发生B2→R→M/M→B2型可逆相变, 掺杂0.3%Cr后所得Ti-50.8Ni-0.3Cr合金的相变类型为B2→R→M/M→R→B2, 相变温度大幅度降低. 室温下, Ti-50.8Ni和Ti-50.8Ni-0.3Cr合金的相组成均为母相B2, 前者呈现形状记忆效应, 后者呈现超弹性. 随循环变形次数n的增加, Ti-50.8Ni合金的特性由形状记忆效应演变为线性超弹性, 合金的应力诱发马氏体临界应力和积累残余应变迅速增加; Ti-50.8Ni-0.3Cr合金的特性由非完全超弹性演变为完全超弹性, 超弹性应力-应变曲线形态比较稳定. 随n增加, Ti-50.8Ni合金的超弹性残余应变εr减小, 超弹性应变恢复率ηs增加; Ti-50.8Ni-0.3Cr合金的εrηs则分别稳定在较低和较高水平, 超弹性稳定.
关键词 Ti-Ni合金Ti-Ni-Cr合金形状记忆合金相变循环形变    
Abstract:The effect of Cr addition on the transformation and the cyclic deformation characteristics in 550℃ annealed Ti-50.8Ni shape memory alloy (SMA) were investigated by differential scanning calorimetry (DSC) and tensile test. The B2→R→M/M→B2 type reversiable transformation occurred in Ti-50.8Ni alloy upon cooling/heating. After the addition of 0.3%Cr in Ti-50.8Ni alloy, the transformation type for Ti-50.8Ni-0.3Cr alloy was B2→R→M/M→R→B2, and the transformation temperatures decreased significantly. At room temperature, the phase composition was parent phase B2 for both Ti-50.8Ni and Ti-50.8Ni-0.3Cr alloys, while the former showed shape memory effect; the latter showed superelasticity. With increasing cyclic deformation number n, Ti-50.8Ni alloy evolved from shape memory effect to linear superelasticity, and its stress inducing martensitic critical stress and the accumulation residual strain increased rapidly; while Ti-50.8Ni-0.3Cr alloy evolved from incomplete superelastic to complete superelastic, and the stress-strain curve shape was stable. With increasing n, the superelastic residual strain εr decreased and the superelastic strain recovery ratio ηs of Ti-50.8Ni alloy increased, while the εr and ηs in Ti-50.8Ni-0.3Cr alloy kept at lower and higher values, respectively. The superelastic of Ti-50.8-0.3Cr alloy was stable.
Key wordsTi-Ni alloy    Ti-Ni-Cr alloy    shape memory alloy (SMA)    transformation    cycling deformation
收稿日期: 2010-08-10     
基金资助:

陕西省自然科学基金项目2009JM6010和陕西省教育厅科研计划项目09JK375资助

作者简介: 杨军, 男, 1982年生, 硕士生
[1] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 220

[2] He Z R, Wang F, Zhou J E. Heat Treat Met, 2006; 31(9): 17

(贺志荣, 王芳, 周敬恩. 金属热处理, 2006; 31(9): 17)

[3] Kim J I, Miyazaki S. Metall Mater Trans, 2005; 36A: 3301

[4] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329

(贺志荣, 王 芳. 金属学报, 2010; 46: 329)

[5] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293

(贺志荣, 王芳, 王永善, 夏鹏举, 杨波. 金属学报, 2007; 43: 1293)

[6] Liu A L, Sui J H, Lei Y C, Cai W, Gao Z Y, Zhao L C. J Mater Sci, 2007; 42: 5791

[7] Adharapurapu R R, Vecchio K S. Exp Mech, 2007; 47: 365

[8] Soga Y, Doi H, Yoneyama T. Mater Med, 2000; 11: 695

[9] Chen F. Mech Eng, 2009; 10: 21

(陈芳. 机械工程师, 2009; 10: 21)

[10] Shang Z J, Wang Z M, Yin G S, Zheng B Y. Rare Met Mater Eng, 2009; 38: 460

(商泽进, 王忠民, 尹冠生, 郑碧玉. 稀有金属材料与工程, 2009; 38: 460)

[11] Zhang X P, Liu H Y, Yuan B, Zhang Y P. Mater Sci Eng, 2008; A481: 170

[12] Carl P F, Alicia M O, Jeffrey T, Ken G, Hans J M. Metall Mater Trans, 2004; 35A: 2013

[13] Cho G B, Kim Y H, Hur S G, Yu C A, Nam T H. Met Mater Int, 2006; 12: 181

[14] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23

(贺志荣, 王芳. 金属学报, 2008; 44: 23)

[15] Tahara M, Kim H Y, Hosoda H, Miyazaki S. Acta Mater, 2009; 57: 2461

[16] Miyazaki S, Imai T, Igo Y, Otsuka K. Metall Trans, 1986; 17A: 115

[17] Eucken S, Duering T W. Acta Metall, 1989; 37: 2245

[18] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 121

(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京:国防工业出版社, 2002: 121)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[9] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[10] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[11] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[12] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[15] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.