Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1289-1302    DOI: 10.3724/SP.J.1037.2010.00436
  综述 本期目录 | 过刊浏览 |
γ´´γ´相强化的Ni-Fe基高温合金GH4169的研究与发展
谢锡善1), 董建新1), 付书红2), 张麦仓1)
1) 北京科技大学材料科学与工程学院高温合金研究室, 北京 100083
2) 北京航空材料研究院先进高温结构材料国防科技重点实验室, 北京 100095
RESEARCH AND DEVELOPMENT OF γ´´ AND γ´ STRENGTHENED Ni-Fe BASE SUPERALLOY GH4169
XIE Xishan1), DONG Jianxin1), FU Shuhong2), ZHANG Maicang1)
1) High Temperature Materials Research Laboratories, School of Materials Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

谢锡善 董建新 付书红 张麦仓. γ´´γ´相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46(11): 1289-1302.
, , , . RESEARCH AND DEVELOPMENT OF γ´´ AND γ´ STRENGTHENED Ni-Fe BASE SUPERALLOY GH4169[J]. Acta Metall Sin, 2010, 46(11): 1289-1302.

全文: PDF(1881 KB)  
摘要: 半个世纪以来, 以γ´´γ´相强化的Ni-Fe基高温合金Inconel 718(GH4169)由于其优异的力学和工艺性能, 在650 ℃以下的高温环境中得到了广泛的应用. 本文采用热力学计算以及合金设计理论与大量的力学性能相结合, 不仅在常规热处理并且在高温长期时效状态下来研究主要强化元素Nb, Ti, Al和杂质元素P, S以及微合金化元素Mg的作用. 采用金相, SEM, TEM, EDS, SAED以及电解萃取和相化学分析等综合分析方法, 对各类析出相γ´´, γ´δδ´´σα-Cr进行定性的分析, 同时亦采用Auger能谱仪分析晶界元素的偏聚行为. 研究结果表明, 为提高GH4169原型合金的性能, 主要强化元素 Nb应控制在高限(5.4%-5.5%), 降低S到10×10-6以下, 提高P至150×10-6以下, 并添加适量的Mg. 为提高GH4169合金的使用温度到680 ℃甚至更高, 必须通过合金化的途径来提高主要强化相 γ´´/γ´的最高稳定温度和控制晶界析出相. 为此, 680 ℃或更高一点温度使用的改进型 GH4169合金中Nb仍应控制在高限(5.4%-5.5%), S控制到10×10-6以下, P提高到150×10-6, 配合适量的Mg微合金化, 同时要提高Al含量至1.0%-1.5%, Ti含量不变仍控制在1%左右, 改进型GH4169合金不仅在650 ℃以上显示出优良的高温组织稳定性, 并且亦提高了高温力学性能.
关键词 Ni-Fe基高温合金组织稳定性 改性微量元素    
Abstractγ´´ and γ´ strengthened Ni-Fe base superalloy Inconel 718 (GH4169) is world-widely used under 650 ℃ because of its excellent mechanical properties and metallurgical workability. The effects of main strengthening elements Nb, Ti, Al, minor elements P, S and micro-alloying element Mg on mechanical properties and structure stability have been studied for this alloy at standard heat treatment and long time aging conditions both by means of mechanical tests (tensile, stress rupture and creep, cyclic stress rupture and crack propagation etc.) and detail structure analyses (SEM, TEM, EDS, SAED, phase separation and micro-chemical analyses etc.) and also Auger analyses on grain boundary segregation behavior. For quality improvement of conventional GH4169, Nb content should be controlled at high level (5.4%-5.5%) with low content of S (<10×10-6) and high level of P (but less than 150×10-6) and with micro-alloying element Mg also. For 680 ℃ even higher temperature used modified GH4169 the γ´´/γ´ highest stable temperature must be raised and the grain boundary precipitates should be controlled. Nb content should be still controlled at high level (5.4%-5.5%), Al content should be raised to 1.0%-1.5% and Ti content still be kept at 1%; S must be controlled to less than 10×10-6 and P should be raised to a high level but less than 150×10-6 and also with micro-alloying element Mg. The modified GH4169 to be used at 680 ℃ or even higher temperature has good thermal structure stability and high mechanical properties above 650 ℃.
Key wordsNi-Fe base superalloy    structure stability    modification    minor element
收稿日期: 2010-08-30     
作者简介: 谢锡善, 男, 1935年生, 教授
[1] Eiselstein H L. US Pat, 046108, 1962 [2] Xie X S, Dong J X, Smith G D, Patel S, Radavich J F. In: Fuchs G E, eds., Long Term Stability of High Temperature Materials. Pittburgh: TMS, 1999: 135 [3] Radavich J F. In: Loria E A, ed., Superalloy 718–Metallurgy and Applications. Pittsburgh: TMS, 1989: 257 [4] Xie X S, Liu X B, Hu Y H, Tang B, Xu Z C, Dong J X, Ni K Q, Zhu Y X, Tian S S, Zhang L P, Xie W. In: Kissinger R D, ed., Superlloys 1996. Pittburgh: TMS, 1996: 599 [5] Fu S H, Dong J X, Zhang M C, Xie X S. J Univ Sci Technol Beijing, 2007; 29: 237 (付书红, 董建新, 张麦仓, 谢锡善. 北京科技大学学报, 2007; 29: 237) [6] Dong J X, Thompson R G, Xie X S. In: Loria E A, ed., Superalloy 718, 625, 706 and Derivatives. Pittsburgh: TMS, 1997: 553 [7] Xie X S, Xu Z C, Ni K Q. J Univ Sci Technol Beijing, 1993; 15: 25 (谢锡善, 徐志超, 倪克铨. 北京科技大学学报, 1993; 15: 25) [8] Xie X S, Dong J X, Zhang M C, Fu S H. Mater Sci Forum, 2007; 546–549: 1281 [9] Dong J X. PhD Thesis, University of Science and Technology of Beijing, 1995 (董建新. 北京科技大学博士学位论文, 1995) [10] Dong J X, Xie X S, Zhang S H. J Univ Sci Technol Beijing, 1995; 17: 134 (董建新, 谢锡善, 章守华. 北京科技大学学报, 1995; 17: 134) [11] Dong J X, Xu Z C, Chen M Z, Xie X S, Zhang S H. J Chin Electron Microsc Soc, 1993; (2): 124 (董建新, 徐志超, 陈梦谪, 谢锡善, 章守华. 电子显微学报, 1993; (2): 124) [12] Dong J X, Zhang M C, Zeng Y P, Xie X S. J Univ Sci Technol Beijing, 2002; 24: 187 (董建新, 张麦仓, 曾燕屏, 谢锡善. 北京科技大学学报, 2002; 24: 187) [13] Dong J X, Zhang M C, Xie X S. Rare Met Mater Eng, 2004; 33: 1153 (董建新, 张麦仓, 谢锡善. 稀有金属材料与工程, 2004; 33: 1153) [14] Wang G L, Wu C W, Zhang M C, Dong J X, Xie X S. Rare Met Mater Eng, 2002; 31: 37 (王改莲, 吴翠微, 张麦仓, 董建新, 谢锡善. 稀有金属材料与工程, 2002; 31: 37) [15] Wang G L, Wu C W, Zhang M C, Xie X S, Lu C F. Metall Anal, 2001; 21: 1 (王改莲, 吴翠微, 张麦仓, 谢锡善, 卢翠芬. 冶金分析, 2001; 21: 1) [16] Fu S H, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2009; A499: 215 [17] Fu S H, Dong J X, Zhang M C, Xie X S. Mater Eng, 2009; 11: 8 (付书红, 董建新, 张麦仓, 谢锡善. 材料工程, 2009; 11: 8) [18] Xie X S, Dong J X, Chen W, Liang Q, Xu Z C, Ni K Q, Chen M Z. Trans Met Heat Treat, 1997; 18: 37 (谢锡善, 董建新, 陈卫, 梁 强, 徐志超, 倪克铨, 陈梦谪. 金属热处理学报, 1997; 18: 37) [19] Xie X S, Wang G L, Dong J X, Xu C M, Cao W D, Kennedy R. In: Loria E A, ed., Superalloys 718, 625, 716 and Derivatives 2005, Pittsburgh: TMS, 2005: 179 [20] Xie X S, Dong J X, Zhang M C, Wang G L, Zhao S Q. Advanced Materials and Process for Gas Turbine. Pittburgh: TMS, 2003: 207 [21] Dong J X, Xie X S, Zhao S H. Scr Metall, 1993; 28: 1477 [22] Xie X S, Xu C M, Dong J X, Cao W D, Kennedy R. In: Loria E A, ed., Superalloys 718, 625, 716 and Derivatives 2005, Pittsburgh: TMS, 2005: 287 [23] Fu S H. PhD Thesis, University of Science and Technology of Beijing, 2009 (付书红. 北京科技大学博士学位论文, 2009)
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[5] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 杨利坡, 张海龙, 张永顺. 高端冷轧箔带形状/性能协同测控现状及趋势预测[J]. 金属学报, 2021, 57(3): 295-308.
[8] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[9] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[10] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[11] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[12] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[13] 张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
[14] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[15] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.