Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 559-566    DOI: 10.11900/0412.1961.2016.00312
  论文 本期目录 | 过刊浏览 |
低偏析技术的发展
张玉妥1,2,陈波2,3,刘奎2,3,李殿中2,3,李依依2,3()
1 沈阳理工大学材料科学与工程学院 沈阳 110159
2 中国科学院金属研究所 沈阳 110016
3 中国科学技术大学材料科学与工程学院 沈阳 110016
Development of Low Segregation Technology
Yutuo ZHANG1,2,Bo CHEN2,3,Kui LIU2,3,Dianzhong LI2,3,Yiyi LI2,3()
1 College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016, China
引用本文:

张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
Yutuo ZHANG, Bo CHEN, Kui LIU, Dianzhong LI, Yiyi LI. Development of Low Segregation Technology[J]. Acta Metall Sin, 2017, 53(5): 559-566.

全文: PDF(6319 KB)   HTML
  
摘要: 

师昌绪先生领导的铸造高温合金团队80年代初开始了低偏析技术的研究。将低偏析技术扩展应用到火电大轴用30Cr2Ni4MoV钢、核电蒸发器传热管用690合金以及核燃料用铀合金。通过解剖3支百吨常压电弧炉熔炼的30Cr2Ni4MoV钢锭,发现控制微量元素O、Al含量可以显著减少偏析。研究了690合金、U-6Nb合金与高碳铀的凝固行为,S、N扩大了690合金的凝固温度区间,并且S的影响大于N的影响;通过控制微量元素S、N含量可使690合金组织中成分均匀。在具有放射性元素的U-6Nb合金和高碳铀中,计算了U-6Nb的凝固温度区间为183 ℃;在高碳铀中,当C含量由0.01%增加到0.03%时,其凝固温度区间由40 ℃增加到了75 ℃;C扩大了高碳铀的凝固温度区间。U-6Nb合金和高碳铀的凝固偏析严重,采用低偏析技术控制U-6Nb合金中的C、N、O含量及高碳铀中C、O含量,达到了减轻凝固偏析的效果,表明低偏析技术具有普适性。

关键词 偏析低偏析技术微量元素凝固区间    
Abstract

The minor element in alloy greatly aggravate the segregation of main elements and formation of harmful phase, resulting the deterioration of mechanical properties. Low segregation technology of cast superalloy was pioneered by Prof. Shi Changxu and co-workers in the early eighties. The technology is to control the content of minor element, such as P, Si, B and Zr, to lower the solidification segregation in the super-alloy. The working temperature and mechanical properties of superalloy can be increased greatly by using the low segregation technology. A series of alloys, such as M17 and GH738 with low segregation and excellent properties, had been developed. This study extends low segregation technology to 30Cr2Ni4MoV steel of large shaft for thermal power equipment, 690 alloy for steam generator tube in nuclear power plant, and uranium alloy for nuclear fuel. The solidification and segregation behaviour in the 30Cr2Ni4MoV steel was investigated, it is found that the minor elements of O and Al are essential for the formation of serious solidification segregation in the steel. Moreover, the solidification behavior of 690 alloy has been studied. S and N increases solidification interval, and the effect of S is greater than that of N. The solidification segregation of 690 alloy can be alleviated by controlling the contents of the S and N. Finally, the solidification temperature interval of high carbon uranium is calculated. With the car bon content increasing from 0.01% to 0.03%, the solidification interval is from 40 ℃ to 75 ℃. Thus, for the radioactive uranium alloys, minor elements show segregation to some extent in the residual liquids of final solidification zone. The minor elements in U-6Nb alloy are C, N and O. For uranium with high carbon content, the minor elements are C and O.

Key wordssegregation    low segregation technology    minor element    solidification interval
收稿日期: 2016-07-20     
图1  多元合金凝固区间示意图
图2  按原工艺生产的第一支100 t 30Cr2Ni4MoV钢锭[21]
图3  通过脱氧熔炼的第二支和第三支100 t 30Cr2Ni4MoV钢锭[20]
图4  S、N含量对690合金凝固温度的影响[23]
图5  不同S含量时690合金1310 ℃等温凝固组织[23]
图6  不同N含量690合金在1355 ℃等温凝固时Cr、Ti、S、C、N在残余液相中的分布[23]
图7  低偏析690合金(7×10-6 S、10×10-6 N)不同温度下的凝固组织[24]
图8  U-Nb合金相图及合金凝固方式[27]
图9  计算的U-Nb合金的液相线与固相线
图10  电弧炉熔炼U-6Nb合金铸态组织[28]
[1] Zhou Y H, Hu Z Q, Jie W Q, et al.Solidification Technology [M]. Beijing: Machinery Industry Press, 1998: 13
[1] (周尧和, 胡壮麒, 介万奇等. 凝固技术[M]. 北京: 机械工业出版社, 1998: 13)
[2] Chen P C, Zhu L S, Li Z.Principle of Materials Processing [M]. Beijing: Machinery Industry Press, 2001: 28, 29, 104, 254
[2] (陈平昌, 朱六姝, 李赞. 材料成形原理 [M]. 北京: 机械工业出版社, 2001: 28, 29, 104, 254)
[3] Zhu Y X, Zhang S N, Xu L Y, et al.The influence of boron on porosity of cast Ni-base superalloys[J]. Acta Metall. Sin., 1985, 21: A1
[3] (朱耀宵, 张顺南, 徐乐英等. 硼与镍基高温合金中的疏松[J]. 金属学报, 1985, 21: A1)
[4] Zhu H Q, Hu Z Q, Zhu Y X, et al.Effect of phosphorus on solidification process and segregation of directionally solidified IN738 superalloy[J]. Metall. Mater. Trans., 1995, 26B: 831
[5] Zhang B D, Tong Y J, Zhang J Y, et al.Microstructure and solidification characteristics of M91 cast Ni-base superalloy[J]. Acta Metall. Sin., 1990, 26: A438
[5] (张炳大, 佟英杰, 张嘉媛等. M91镍基铸造高温合金的组织和凝固特性[J]. 金属学报, 1990, 26: A438)
[6] Zhu Y X, Zhang S N, Zhang T X, et al.A new way to improve the superalloys [A]. Superalloys 1992[C]. Warrendale, PA: TMS, 1992: 145
[7] Hu Z Q, Tang Y J, Zhang J S, et al.Effect of minor element on directional solidification of IN738 alloy[J]. J. Mater. Eng., 1992, (S1): 95
[7] (胡壮麒, 唐亚俊, 张济山等. 微量元素对定向凝固IN738合金的影响(基础研究)[J]. 材料工程, 1992, (S1): 95)
[8] Li Y A, Tang Y J, Zhang J H, et al.Influence of Zr on the solidification behavior and stress rupture property of DZ38 superalloy[J]. Mater. Sci. Process, 1993, 7: 1
[9] Zhu H Q, Tang Y J, Guo S R, et al.Effects of P, Zr and B on microstructure and segregation of directionally solidified IN738 super-alloy[J]. Acta Metall. Sin., 1994, 30: A312
[9] (朱洪群, 唐亚俊, 郭守仁等. P, Zr, B对定向凝固IN738合金组织
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[5] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[7] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[8] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[9] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] 张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.
[13] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[14] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[15] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.