Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 295-308    DOI: 10.11900/0412.1961.2020.00268
  综述 本期目录 | 过刊浏览 |
高端冷轧箔带形状/性能协同测控现状及趋势预测
杨利坡1,2(), 张海龙1, 张永顺1
1.燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils
YANG Lipo1,2(), ZHANG Hailong1, ZHANG Yongshun1
1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
引用本文:

杨利坡, 张海龙, 张永顺. 高端冷轧箔带形状/性能协同测控现状及趋势预测[J]. 金属学报, 2021, 57(3): 295-308.
Lipo YANG, Hailong ZHANG, Yongshun ZHANG. Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils[J]. Acta Metall Sin, 2021, 57(3): 295-308.

全文: PDF(1278 KB)   HTML
摘要: 

随着柔性屏、微型机电、医疗仿生、环保节能等高端产品的快速发展和迅速产业化,不同材质、规格的特种合金箔带的市场需求和质量要求水涨船高,尤其以厚度0.1 mm以内的压延箔带原材料,在微成形、微制造、微装备等高端领域不可或缺。然而,在轧制形变过程中,大宽厚比高端箔带受晶粒、织构、表面形貌、瞬态温度和力学状态的影响明显,普遍存在不同程度的尺寸效应和局部失稳现象,不仅直接影响退火组织和精整工艺制度,使箔带生产关联工序繁多,而且形状尺寸和力学性能差异大,间接影响产品质量,导致成本激增。为了从根本上解决难变形合金箔带的形状/性能指标,提高其室温/低温冷轧形变特性和综合性能,不仅需要从微观组织和表面形貌多角度重构传统的各向同性本构关系,考虑晶粒、织构、热、力、位移差异带来的尺寸耦合特征和同步匹配关系,而且还需要从检测仪器仪表、工况误差、大数据聚类评估等角度,协同分析形变、性能之间的逻辑关系和调控规律,从而改善板形、板厚、表面质量、机械性能等指标。基于上述思路,分别从形状/性能表征、形变机理、测控过程、检测装备、数学模型等方面,阐述总结了当前冷轧箔带的研究现状,梳理了瞬态温度、组织形貌、界面形貌、形变形状和力学性能之间的关系,并针对难变形新材料的异步电轧改形改性新工艺和室温增塑增韧成形机制进行了趋势预测,尝试为大宽厚比特种合金箔带形状/性能协同测控的理论研究和快速应用提供新的思路。

关键词 大宽厚比高端箔带形状/性能协同控制增塑增韧在线改形改性异步电轧    
Abstract

With the rapid development and industrialization of high-end products such as flexible screens, micro-electromechanical, medical bionics, environmental protection, and energy-saving devices, there has been an increase in the market demand and quality requirements for special alloys with different materials and specifications. In high-end processes such as micro forming, micro manufacturing, and micro equipment, foils with thicknesses of less than 0.1 mm are indispensable as raw materials. However, during rolling deformation processes, the large width-thickness ratio of a foil is affected by many factors, including grains, texture, surface morphology, transient temperature, and mechanical properties. There are generally varying degrees of size effects and local instability that directly affect the annealed structure and finishing process. These render relevant processes for finished foils complicated, resulting in large differences in shape, size, and mechanical properties. These issues also lead to a surge in costs and indirectly affect the quality index as well as the added value of a final product. To fundamentally resolve the shape index of foils with large width-thickness ratios and improve the cold-rolling deformation characteristics and comprehensive performance of foils at room/low temperature, it is necessary to establish constitutive relationships from the multiple angles of microstructure and surface topography. From differences in grain, texture, heat, force, and displacement, considering the size coupling feature and synchronization; and from the perspective of detection instruments, operating condition errors, and big-data cluster evaluation, there is a need to collaboratively analyze the logical relationship and regulation between deformation and performance. Based on the above ideas and from the aspects of shape characterizations, deformation mechanism, measurement and control, testing equipment, and mathematical model, recent studies on the cold-rolling of foils are summarized and the cascade relationship among transient temperature, structure morphology, interface morphology, deformation shape, and mechanical properties is established. For novel high-end materials, the trend of the new process of electropulsing differential speed rolling and the mechanism of plasticizing and toughening at room temperature is predicted in an attempt to provide new ideas and directions for the basic theoretical research and rapid engineering application of the shape/performance collaborative measurement and control of foils with large width-thickness ratios.

Key wordshigh-end foil with large width-thickness ratio    collaborative control of shape and performance    plasticizing and toughening    online modification of shape and performance    asynchronous electric rolling
收稿日期: 2020-07-21     
ZTFLH:  TH12  
基金资助:国家自然科学基金项目(51305387);河北省自然科学-钢铁联合基金项目(E2015203103)
作者简介: 杨利坡,1978年生,教授,博士
图1  带材浪形和截面形状示意图(a) edge wave (b) rib wave (c) middle wave (d) lateral displacement
图2  接触界面和润滑摩擦机制
图3  液氮冷却轧制
图4  大宽厚比宽箔带电塑形变基本关系
1 Jiang Z Y, Wei D, Tieu A K. Analysis of cold rolling of ultra thin strip [J]. J. Mater. Process. Technol., 2009, 209: 4584
2 Xie H B, Manabe K I, Furushima T, et al. Lubrication characterisation analysis of stainless steel foil during micro rolling [J]. Int. J.Adv. Manuf. Technol., 2016, 82: 65
3 Liu X H, Song M, Sun X K, et al. Advances in research and application of foil rolling [J]. J. Mech. Eng., 2017, 53(10): 1
3 刘相华, 宋 孟, 孙祥坤等. 极薄带轧制研究与应用进展 [J]. 机械工程学报, 2017, 53(10): 1
4 Antonova O V, Volkov A Y, Kamenetskii B I, et al. Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature [J]. Mater. Sci. Eng., 2016, A651: 8
5 Jin S, Huang M, Kwon Y, et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing [J]. Science, 2018, 362: 1021
6 Lu Y, Shu X Y, Liao X Z. Size effect for achieving high mechanical performance body-centered cubic metals and alloys [J]. Sci. China Mater., 2018, 61: 1495
7 Shimizu T, Manabe K, Yang M. Deformation behavior of ultra-thin metal foils in strip drawing friction test [J]. Key Eng. Mater., 2010, 443: 110
8 van Putten K, Kopp R, Hirt G. Influences of size effects on the rolling of micro strip [A]. AIP Conference Proceedings [C], 2007, 907: 629
9 Bui Q T, Ro S K, Park J K. A static model for micro-pattern forming prediction in rolling-based surface texturing [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 2819
10 Dong X H, Wang Q, Zhang H M, et al. Research progress of micro-scale mesoscale effect [J]. Sci. China (Technol.), 2013, 43: 115
10 董湘怀, 王 倩, 章海明等. 微成形中尺寸效应研究的进展 [J]. 中国科学: 技术科学, 2013, 43: 115
11 Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming [J]. Mater. China, 2016, 35: 251
11 单德彬, 徐 杰, 王春举等. 塑性微成形技术研究进展 [J]. 中国材料进展, 2016, 35: 251
12 Yu Q B, Liu X H, Tang D L. Extreme extensibility of copper foil under compound forming conditions [J]. Sci. Rep., 2013, 3: 3556
13 Song M, Liu X H, Liu L Z. Size effect on mechanical properties and texture of pure copper foil by cold rolling [J]. Materials, 2017, 10: 1
14 Tang D L, Liu X H, Song M. Size effect in copper foil after rolling [J]. J. Northeast. Univ. (Nat. Sci.), 2017, 39: 1239
14 汤德林, 刘相华, 宋 孟. 铜极薄带轧制过程中尺寸效应的研究 [J]. 东北大学学报(自然科学版), 2017, 39: 1239
15 Li L J, Zhang H M, Jiang Z Y, et al. Effects of grain size on deformation behaviour of rolling at micro scale [J]. Ordnance Mater. Sci. Eng., 2016, 39(6): 43
15 李连杰, 张红梅, 姜正义等. 微尺度下晶粒尺寸效应对轧制变形行为的影响 [J]. 兵器材料科学与工程, 2016, 39(6): 43
16 Jing Y, Zhang H M, Wu H, et al. Effects of microrolling parameters on the microstructure and deformation behavior of pure copper [J]. Int. J. Miner. Metall. Mater., 2018, 25: 45
17 Zhan M, Li H W, Sun X X, et al. Research progress of the multi-scale modeling of heterogeneous deformation for hard-to-deform material based on crystal plasticity [J]. J. Plast. Eng., 2018, 25(1): 1
17 詹 梅, 李红伟, 孙新新等. 基于晶体塑性的难变形材料不均匀变形多尺度建模研究进展 [J]. 塑性工程学报, 2018, 25(1): 1
18 Xiao H, Ren Z K, Liu X, et al. Experiment and finite element simulation of roll flattening in deformation zone for ultra-thin strip rolling [J]. Steel, 2017, 52(1): 38
18 肖 宏, 任忠凯, 刘 晓等. 极薄带轧制变形区轧辊压扁试验与有限元模拟 [J]. 钢铁, 2017, 52(1): 38
19 Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
20 Tibar H, Jiang Z Y. Improving thin strip profile using work roll cross and work roll shifting methods in cold strip rolling [J]. Int. J. Met., 2017, 2017: 6489769
21 Wang W K, Miao Q, Chen X M, et al. Critical rolling process parameters for dynamic recrystallization behavior of AZ31 magnesium alloy sheets [J]. Materials (Basel), 2018, 11: 2019
22 Zhang G H, Ma L F, Lu H P. Change of temperature field for roll of warm-rolled magnesium alloy sheet [J]. J. Taiyuan Univ. Sci. Technol., 2018, 39: 359
22 张国花, 马立峰, 卢海平. 温轧镁合金板材轧辊温度场研究 [J]. 太原科技大学学报, 2018, 39: 359
23 Yu H L, Yan M, Li J T, et al. Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling [J]. Mater. Sci. Eng., 2018, A710: 10
24 Dumitru F D, Higuera-Cobos O F, Cabrera J M. ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization [J]. Mater. Sci. Eng., 2014, A594: 32
25 Kuang J, En Low T S, Niezgoda S R, et al. Abnormal texture development in magnesium alloy Mg-3Al-1Zn during large strain electroplastic rolling: Effect of pulsed electric current [J]. Int. J. Plast., 2016, 87: 86
26 Nguyen-Tran H D, Oh H S, Hong S T, et al. A review of electrically-assisted manufacturing [J]. Int. J. Precis. Eng. Manuf. Green Technol., 2015, 2: 365
27 Kim M J, Jeong H J, Park J W, et al. Modified Johnson-Cook model incorporated with eletroplasticity for uniaxial tension under a pulsed electric current [J]. Met. Mater. Int., 2018, 24: 42
28 Li M, Guo D F, Li J T, et al. Achieving heterogeneous structure in HCP Zr via electroplastic rolling [J]. Mater. Sci. Eng., 2018, A722: 93
29 Engel U. Tribology in microforming [J]. Wear, 2006, 260: 265
30 Jeon J, Bramley A N. A friction model for microforming [J]. Int. J. Adv. Manuf. Technol., 2007, 33: 125
31 Shigaki Y, Nakhoul R, Montmitonnet P. Numerical treatments of slipping/no-slip zones in cold rolling of thin sheets with heavy roll deformation [J]. Lubricants, 2015, 3: 113
32 Shatalov R, Maksimov E, Koinov T, et al. Research of flatness defects forming at 20-hi steel strips rolling mill [J]. J. Chem. Technol. Metall., 2017, 52: 199
33 Prinz K, Steinboeck A, Müller M, et al. Automatic gauge control under laterally asymmetric rolling conditions combined with feedforward [J]. IEEE Trans. Ind. Appl., 2017, 53: 2560
34 Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip [J]. Chin. J. Mech. Eng., 2016, 52(10): 32
34 张清东, 张勃洋, 李 瑞等. 钢板微观表面质量控制理论与技术研究进展 [J]. 机械工程学报, 2016, 52(10): 32
35 Liu Y J, Tieu A K. A thermal mixed film lubrication model in cold rolling [J]. J. Mater. Process. Technol., 2002, 130-131: 202
36 Hamraoui M. Thermal behaviour of rollers during the rolling process [J]. Appl. Therm. Eng., 2009, 29: 2386
37 Tran D C, Tardif N, Limam A. Experimental and numerical modeling of flatness defects in strip cold rolling [J]. Int. J. Solids Struct., 2015, 69-70: 343
38 Plicht G, Schillak H, Hoflnghoff H, et al. Cold rolling of metal strip using technical gases [J]. Air Prod. Chem., Inc., 2006, 68: 1
39 Yang L P, Yu H X, Zhang Y S, et al. Shape detection and control system of cold rolling strip based on the virtual instrument and its industrial application [J]. Chin. J. Mech. Eng., 2018, 54(14): 1
39 杨利坡, 于华鑫, 张永顺等. 冷轧带钢虚拟仪器板形测控系统及其应用 [J]. 机械工程学报, 2018, 54(14): 1
40 Yang L P, Jian Z Y, Zhang Y S, et al. High precision recognition and adjustment of complicated shape details in fine cold rolling process of ultra-thin wide strip [J]. J. Manuf. Process., 2018, 35: 508
41 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
42 Minton J J, Cawthorn C J, Brambley E J. Asymptotic analysis of asymmetric thin sheet rolling [J]. Int. J. Mech. Sci., 2016, 113: 36
43 Fu M W, Wang J L, Korsunsky A M. A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components [J]. Int. J. Mach. Tools Manuf., 2016, 109: 94
44 Li X P, Wang F, Li X H, et al. Improvement of formability of Mg-3Al-1Zn alloy strip by electroplastic-differential speed rolling [J]. Mater. Sci. Eng., 2014, A618: 500
45 Xu Z H, Tang G Y, Tian S Q, et al. Research of electroplastic rolling of AZ31 Mg alloy strip [J]. J. Mater. Process. Technol., 2007, 182: 128
46 Zhu R F, Tang G Y, Shi S Q, et al. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy [J]. Mater. Des., 2013, 44: 606
47 Potapova A A, Stolyarov V V. Deformability and structural features of shape memory TiNi alloys processed by rolling with current [J]. Mater. Sci. Eng., 2013, A579: 114
48 Liu P, Hsueh C H, Shek C H. Electroplastic forming in a Fe-based metallic glass ribbon [J]. J. Alloys Compd., 2016, 658: 795
49 Zhu R, Tang G. The improved plasticity of NiTi alloy via electropulsing in rolling [J]. Mater. Sci. Technol., 2017, 33: 546
50 Thien N T, Jeong Y H, Hong S T, et al. Electrically assisted tensile behavior of complex phase ultra-high strength steel [J]. Int. J. Precis. Eng. Manuf. Green Technol., 2016, 3: 325
51 Tskhondiya G A, Beklemishev N N. Simulating the effect of a high density electric current pulse on the stress field during plastic deformation [J]. Int. J. Mater. Form., 2012, 5: 157
52 Scudino S. Mechanism of shear banding during cold rolling of a bulk metallic glass [J]. J. Alloys Compd., 2019, 773: 883
53 Su J, Sanjari M, Kabir A S H, et al. Static recrystallization behavior of magnesium AZ31 alloy subjected to high speed rolling [J]. Mater. Sci. Eng., 2016, A662: 412
54 Dong Y, Liu J Z. Effects of initial orientation on microstructure and mechanical properties of AZ31 magnesium alloy sheets fabricated by large strain rolling [J]. Chin. J. Nonferrous. Met., 2014, 24: 1700
54 董 勇, 刘吉兆. 初始取向对大应变轧制AZ31镁合金板材显微组织和力学性能的影响 [J]. 中国有色金属学报, 2014, 24: 1700
55 Song G S, Jiang J Q, Chen S F, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheet processed by asymmetry rolling [J]. Rare Met. Mater. Eng., 2017, 46: 3512
55 宋广胜, 姜敬前, 陈帅峰等. 非对称轧制AZ31镁合金板材组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3512
56 Liao H M, Tang G Y, Jiang Y B, et al. Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2011, A529: 138
57 Křupka I, Hartl M, Liška M. Thin lubricating films behaviour at very high contact pressure [J]. Tribol. Int., 2006, 39: 1726
58 Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
59 Chan W L, Fu M W, Yang B. Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process [J]. Mater. Sci. Eng., 2012, A534: 374
No related articles found!