Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 748-754    DOI: 10.3724/SP.J.1037.2009.00816
  论文 本期目录 | 过刊浏览 |
典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较
曹国良; 李国明;  陈珊;  常万顺; 陈学群
海军工程大学理学院化学与材料系; 武汉 430033
COMPARISON ON PITTING CORROSION RESISTANCE OF NICKEL AND CHROMIUM IN TYPICAL SEA WATER RESISTANCE STEELS
CAO Guoliang; LI Guoming; CHEN Shan; CHANG Wanshun; CHEN Xuequn
Department of Chemistry and Materials; College of Sciences; Naval University of Engineering; Wuhan 430033
引用本文:

曹国良 李国明 陈珊 常万顺 陈学群. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较[J]. 金属学报, 2010, 46(6): 748-754.
. COMPARISON ON PITTING CORROSION RESISTANCE OF NICKEL AND CHROMIUM IN TYPICAL SEA WATER RESISTANCE STEELS[J]. Acta Metall Sin, 2010, 46(6): 748-754.

全文: PDF(2794 KB)  
摘要: 

选择Ni-Cu-P和Cr-Cu-P两类典型的耐海水腐蚀钢, 在pH=10的3%(质量分数)NaCl溶液中进行极化实验, 比较了钢的点蚀诱发敏感性; 在3%海盐水中进行间浸挂片实验, 评价了钢的点蚀扩展速度; 利用OM, 电子探针(EPMA), SEM和XRD分析钢中夹杂物、腐蚀形貌和锈层的特征. 结果表明, Cr-Cu-P钢中的点蚀诱发敏感性要低于Ni-Cu-P, 且脱氧程度的差异不会影响到两类钢的耐点蚀性能. 挂片实验结果表明, 两类耐海水腐蚀钢的平均腐蚀速率接近, 但Cr-Cu-P钢的点蚀扩展速率明显大于Ni-Cu-P钢. 在酸化的蚀坑内, Ni提高基体的电位, 而Cr则降低基体的电位.锈层分析结果表明, 两类钢的内锈层组成均主要为Fe3O4, α-FeOOH和少量的非晶化合物, 但Cr-Cu-P钢表面的锈层比Ni-Cu-P钢更致密.

关键词 耐海水腐蚀钢点蚀 锈层    
Abstract

Ni–Cu–P and Cr–Cu–P steels are well known as sea water resistance steels, but the effects of alloying elements in steels on corrosion resistance are still not clear. Generally, Cr and Ni are important alloying elements for corrosion resistance but their roles in resisting pitting corrosion still need investigating. In order to understand the effects of Cr and Ni on rust layers and resistance against pitting corrosion, Ni–Cu–P and Cr–Cu–P steels were smelted in vacuum induction melting furnace and examined in the laboratory. Pitting susceptibility of two sea water resistance steels was compared by means of potentiodynamic polarization tests in 3% (mass fraction) NaCl solution. In order to evaluate the pitting propagation of steels, the simulating occluded corrosion cell tests and indoor interval hanging plate tests were performed in artificial sea water and 3% sea salt solution, respectively. The composition of inclusions, corrosive feature and characteristic of rust layer were studied by OM, electron probe micro–analyzer (EPMA), SEM and XRD. The results indicate that Ni–Cu–P steels exhibit stronger pitting susceptibility than Cr–Cu–P steels, and pitting susceptibility of two kinds of steels is not influenced by deoxidizing degrees. The results also suggest that pitting propagation rate of Cr–Cu–P steels is obviously greater than that of Ni–Cu–P steels. In acidified pits, alloying element Ni helps to enhance thermodynamic stability of matrix and improve potential of matrix. However, addition of alloying element Cr tends to lower the potential of matrix in pits. The results of rust layer analysis indicate that the compositions of inner rust layer are Fe3O4, α–FeOOH and a small amount of amorphous oxides. However, the rust layer of Cr–Cu–P steels is much more compact than that of Ni–Cu–P steels. It can be observed by SEM and EPMA that Cr in Cr–Cu–P steels is enriched in inner rust layer close to the matrix, while Ni is not found enrichment in inner rust layer of Ni–Cu–P steels.

Key wordssea water resistance steel    pitting    rust layer
收稿日期: 2009-12-07     
作者简介: 曹国良, 男, 1980年生, 博士生

[1] Matsushima I. Translated by Jin Y K. Low Alloy Corrosion Resistant Steels—A History of Development Application and Research. Beijing: Metallurgical Industry Press, 2004: 100
(松岛岩 著, 靳裕康 译. 低合金钢耐蚀钢---开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)
[2] Melchers R E. Corros Sci, 2004; 46: 1669
[3] Huang J Z, Zuo Y. Resistance to Corrosion and Corrosive Data of Materials. Beijing: Chemical Industry Press, 2003: 97
(黄建中, 左禹. 材料的耐蚀性和腐蚀数据. 北京: 化学工业出版社, 2003: 97)
[4] Southwell C R, Alexander A L. Mater Prot, 1970; 14: 9
[5] Huang G Q. Corros Sci Prot Technol, 2000; 12: 86
(黄桂桥. 腐蚀科学与防护技术, 2000; 12: 86)
[6] Liu D Y, Wei K J, Li W J, Huang Q. J Chin Soc Corros Prot, 2003; 23: 7
(刘大扬, 魏开金, 李文军, 黄桂桥. 中国腐蚀与防护学报, 2003; 23: 7)
[7] Townsend H E. Corrosion, 2001; 57: 497
[8] Suzuki S Y, Takahashi Y, Kamimura T, Miyuki H, Shinoda K, Tohji K, Waseda Y. Corros Sci, 2004; 46: 1751
[9] Yang W, Gu J X, Li Q S, Xiao J X. Localized Corrosion of etals. Beijin: Chemical Industry Press, 1995: 59
(杨武, 顾睿祥, 黎樵shen, 肖京先. 金属的局部腐蚀. 北京: 化学工业出版社, 1995: 59)
[10] Wang J M, Chen X Q, Chang W S, Zhu X. J Harbin Inst Technol, 2006; 38: 1143
(王建民, 陈学群, 常万顺, 朱锡. 哈尔滨工业大学学报, 2006; 38: 1943)
[11] Zhang C Y, Chen X Q, Chen D B, Pan R Y. J Chin Soc Corros Prot, 2001; 21: 265
(张春亚, 陈学群, 陈德斌, 潘瑞扬. 中国腐蚀与防护学报, 2001; 21: 265)
[12] Yang X Z, Yang W. Corrosive Electrochemical Thermodynamic Potential—pH Diagram and Application of Metals. Beijing: Chemical Industry Press, 1991: 138
(杨熙珍, 杨武. 金属腐蚀电化学热力学电位---pH图及其应用. 北京: 化学工业出版社, 1991: 138)
[13] Zhu W C, Leng W H, Zhang J Q, Cao C N. Acta Metall Sin (Engl Lett), 2006; 19: 91
[14] Szklarska–Smialowska Z. Corros Sci, 2002; 44: 1143
[15] Jae–bong Lee. Mater Chem Phys, 2006; 99: 224
[16] Wang J M, Chen X Q, Li G M. J Univ Sci Technol Beijing, 2004; 11: 555
[17] Dillmann P, Balasubramaniam R, Beranger G. Corros Sci, 2002; 44: 2231
[18] Choi Y S, Shim J J, Kim J G. Mater Sci Eng, 2004; A385: 148
[19] Chen X H, Dong J H, Han E H, Ke W. Mater Lett, 2007; 61: 4050

[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[4] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[5] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] 王力,董超芳,张达威,孙晓光,Thee Chowwanonthapunya,满成,肖葵,李晓刚. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128.
[7] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[8] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[10] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[11] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[12] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[13] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[14] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.