|
|
|
| 316H钢及其焊缝金属辐照He泡演化与力学行为的相场-晶体塑性耦合模拟 |
王栋1,2,3, 徐连勇1,2,3( ), 赵雷1,2,3( ), 韩永典1,2,3, 宋恺1,2,3 |
1 天津大学 材料科学与工程学院 天津 300350 2 天津大学 天津市现代连接技术重点实验室 天津 300350 3 天津大学 高性能轧辊材料与复合成形全国重点实验室 天津 300350 |
|
| Phase Field and Crystal Plasticity Simulation of Irradiation-Induced He Bubbles Evolution and Mechanical Behavior in 316H Steel and Weld Metal |
WANG Dong1,2,3, XU Lianyong1,2,3( ), ZHAO Lei1,2,3( ), HAN Yongdian1,2,3, SONG Kai1,2,3 |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350, China 3 State Key Laboratory of High Performance Roll Materials and Composite Forming, Tianjin 300350, China |
引用本文:
王栋, 徐连勇, 赵雷, 韩永典, 宋恺. 316H钢及其焊缝金属辐照He泡演化与力学行为的相场-晶体塑性耦合模拟[J]. 金属学报, 2026, 62(1): 173-190.
Dong WANG,
Lianyong XU,
Lei ZHAO,
Yongdian HAN,
Kai SONG.
Phase Field and Crystal Plasticity Simulation of Irradiation-Induced He Bubbles Evolution and Mechanical Behavior in 316H Steel and Weld Metal[J]. Acta Metall Sin, 2026, 62(1): 173-190.
| [1] |
Li Y, Wang F, Zheng Y M, et al. Multiaxial isothermal and thermomechanical fatigue behavior of 316H stainless steel welded joint and life prediction [J]. Int. J. Fatigue, 2026, 203: 109295
|
| [2] |
Gu Z M, Zhong M, Gong Y, et al. Tracking martensitic substructure evolution in the heat-affected zone of P91 steel: Integrating CSLM observation and post-mortem microstructural analysis [J]. Metall. Mater. Trans., 2025, 56A: 4744
|
| [3] |
Lin Y R, Chen W Y, Tan L Z, et al. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures [J]. Acta Mater., 2021, 217: 117165
|
| [4] |
Li J T, Beyerlein I J, Han W Z. Helium irradiation-induced ultrahigh hardening in niobium [J]. Acta Mater., 2022, 226: 117656
|
| [5] |
Jublot-Leclerc S, Lescoat M L, Fortuna F, et al. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel [J]. J. Nucl. Mater., 2015, 466: 646
|
| [6] |
Chen Y, Li Y P, Ran G, et al. In-situ TEM observation of the evolution of dislocation loops and helium bubbles in a pre helium irradiated FeCrAl alloy during annealing [J]. Prog. Nucl. Energy, 2020, 129: 103502
|
| [7] |
Villacampa I, Chen J C, Spätig P, et al. Helium bubble evolution and hardening in 316L by post-implantation annealing [J]. J. Nucl. Mater., 2018, 500: 389
|
| [8] |
Judge C D, Gauquelin N, Walters L, et al. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen [J]. J. Nucl. Mater., 2015, 457: 165
|
| [9] |
Miura T, Fujii K, Fukuya K. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel [J]. J. Nucl. Mater., 2015, 457: 279
|
| [10] |
Fu C L, Li J J, Bai J J, et al. Evolution of helium bubbles in SLM 316L stainless steel irradiated with helium ions at different temperatures [J]. J. Nucl. Mater., 2022, 562: 153609
|
| [11] |
Bai J J, Li J J, Fu C L, et al. Effect of He ion irradiation on the GH3535 weld metal at high temperature [J]. Acta Metall. Sin., 2024, 60: 299
|
| [11] |
白菊菊, 李健健, 付崇龙 等. GH3535合金焊缝高温氦离子辐照效应 [J]. 金属学报, 2024, 60: 299
|
| [12] |
Wang D, Xu L Y, Zhao L, et al. Microstructural and mechanical responses of 316H and weld metal under Helium irradiation at 550 oC [J]. J. Nucl. Mater., 2025, 605: 155564
|
| [13] |
Jelea A. Molecular dynamics modeling of helium bubbles in austenitic steels [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2018, 425B: 50
|
| [14] |
Stan M, Ramirez J C, Cristea P, et al. Models and simulations of nuclear fuel materials properties [J]. J. Alloys Compd., 2007, 444-445: 415
|
| [15] |
Hu S Y, Henager Jr C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels [J]. J. Nucl. Mater., 2009, 392: 292
|
| [16] |
Millett P C, El-Azab A, Rokkam S, et al. Phase-field simulation of irradiated metals: Part I: Void kinetics [J]. Comput. Mater. Sci., 2011, 50: 949
|
| [17] |
Millett P C, El-Azab A, Wolf D. Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics [J]. Comput. Mater. Sci., 2011, 50: 960
|
| [18] |
Li Y L, Hu S Y, Montgomery R, et al. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2013, 303B: 62
|
| [19] |
Hu S Y, Burkes D E, Lavender C A, et al. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation [J]. J. Nucl. Mater., 2016, 479: 202
|
| [20] |
Liang L Y, Mei Z G, Soo Kim Y, et al. Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel [J]. Comput. Mater. Sci., 2018, 145: 86
|
| [21] |
Jiang Y B, Sun Z P, Wang D J, et al. Effects of grain boundaries on the evolution of radiation-induced bubbles in polycrystalline tungsten: A phase-field simulation [J]. J. Nucl. Mater., 2024, 588: 154757
|
| [22] |
Liu C Y, Feng Z H, Zhang Y P, et al. Phase field simulation of bubble evolution dynamics in Fe-Cr alloys [J]. Acta Metall. Sin., 2024, 60: 1279
|
| [22] |
刘彩艳, 冯泽华, 张云鹏 等. Fe-Cr合金气泡演化动力学的相场法模拟 [J]. 金属学报, 2024, 60: 1279
|
| [23] |
Hu S Y, Beeler B. Gas bubble evolution in polycrystalline UMo fuels under elastic-plastic deformation: A phase-field model with crystal-plasticity [J]. Front. Mater., 2021, 8: 682667
|
| [24] |
Demir E, Horton E W, Mokhtarishirazabad M, et al. Grain size and shape dependent crystal plasticity finite element model and its application to electron beam welded SS316L [J]. J. Mech. Phys. Solids, 2023, 178: 105331
|
| [25] |
Gan L F, Zhu B Y, Ling C, et al. Micro-mechanics investigation of heterogeneous deformation fields and crack initiation driven by the local stored energy density in austenitic stainless steel welded joints [J]. J. Mech. Phys. Solids, 2024, 188: 105652
|
| [26] |
Jiang H, Yang Z Y, Guo Z F, et al. Interpretation of mechanical properties gradient in laser-welded joints: Experiments and grain morphology-dependent crystal plasticity modeling [J]. J. Mater. Res. Technol., 2024, 33: 5934
|
| [27] |
Wang D, Zhao L, Xu L Y, et al. A microstructure-based study of irradiation hardening in stainless steel: Experiment and phase field modeling [J]. J. Nucl. Mater., 2022, 569: 153940
|
| [28] |
Xiao Z H, Wang Y F, Hu S Y, et al. A quantitative phase-field model of gas bubble evolution in UO2 [J]. Comput. Mater. Sci., 2020, 184: 109867
|
| [29] |
Jiang Y B, Xin Y, Liu W B, et al. Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy [J]. Nucl. Eng. Technol., 2022, 54: 226
|
| [30] |
Wang Y F, Xiao Z H, Hu S Y, et al. A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient [J]. Comput. Mater. Sci., 2020, 183: 109817
|
| [31] |
Wang Y F, Xiao Z H, Shi S Q. Xe gas bubbles evolution in UO2 fuels—A phase field simulation [J]. Sci. Sin. Phys. Mech. Astron., 2019, 49: 114607
|
| [31] |
王亚峰, 肖知华, 石三强. UO2核燃料中Xe气泡演化的相场模型与分析 [J]. 中国科学: 物理学 力学 天文学, 2019, 49: 114607
|
| [32] |
Magomedov M N. Parameters of the vacancy formation and self-diffusion in the iron [J]. J. Phys. Chem. Solids, 2023, 172: 111084
|
| [33] |
Wen P, Tonks M R, Phillpot S R, et al. The effect of stress on the migration of He gas bubbles under a thermal gradient in Fe by phase-field modeling [J]. Comput. Mater. Sci., 2022, 209: 111392
|
| [34] |
Caro A, Schwen D, Hetherly J, et al. The capillarity equation at the nanoscale: Gas bubbles in metals [J]. Acta Mater., 2015, 89: 14
|
| [35] |
Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: John Wiley Sons, 1983: 201
|
| [36] |
Jiang W, Hu T C, Aagesen L K, et al. Three-dimensional phase-field modeling of porosity dependent intergranular fracture in UO2 [J]. Comput. Mater. Sci., 2020, 171: 109269
|
| [37] |
Li Y L, Hu S Y, Barker E, et al. Effect of grain structure and strain rate on dynamic recrystallization and deformation behavior: A phase field-crystal plasticity model [J]. Comput. Mater. Sci., 2020, 180: 109707
|
| [38] |
Demir E, Martinez-Pechero A, Hardie C, et al. OXFORD-UMAT: An efficient and versatile crystal plasticity framework [J]. Int. J. Solids Struct., 2025, 307: 113110
|
| [39] |
Monnet G, Mai C. Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies [J]. J. Nucl. Mater., 2019, 518: 316
|
| [40] |
Kubin L, Devincre B, Hoc T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals [J]. Acta Mater., 2008, 56: 6040
|
| [41] |
Patra A, McDowell D L. Crystal plasticity-based constitutive modelling of irradiated bcc structures [J]. Philos. Mag., 2012, 92: 861
|
| [42] |
Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
|
| [43] |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
|
| [44] |
Cahn J W, Allen S M. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics [J]. J. Phys. Colloq., 1977, 38: C7-51
|
| [45] |
Jokisaari A M, Permann C, Thornton K. A nucleation algorithm for the coupled conserved-nonconserved phase field model [J]. Comput. Mater. Sci., 2016, 112: 128
|
| [46] |
Aagesen L K, Jokisaari A, Schwen D, et al. A phase-field model for void and gas bubble superlattice formation in irradiated solids [J]. Comput. Mater. Sci., 2022, 215: 111772
|
| [47] |
Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations [J]. Comput. Phys. Commun., 1998, 108: 147
|
| [48] |
Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput. Methods Appl. Mech. Eng., 1998, 157: 69
|
| [49] |
Lebensohn R A, Kanjarla A K, Eisenlohr P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials [J]. Int. J. Plast., 2012, 32-33: 59
|
| [50] |
Aagesen L K, Schwen D, Tonks M R, et al. Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO2 nuclear fuel [J]. Comput. Mater. Sci., 2019, 161: 35
|
| [51] |
Kohnert A A, Capolungo L. The kinetics of static recovery by dislocation climb [J]. npj Comput. Mater., 2022, 8: 104
|
| [52] |
Stechauner G, Kozeschnik E. Self-diffusion in grain boundaries and dislocation pipes in Al, Fe, and Ni and application to AlN precipitation in steel [J]. J. Mater. Eng. Perform., 2014, 23: 1576
|
| [53] |
Chen W B, Ding X B, Zhai L H, et al. Effect of δ-ferrite decomposition on the tensile properties of one modified 316H stainless steel: Experimental investigations and crystal plastic finite element simulations [J]. Mater. Sci. Eng., 2024, A915: 147224
|
| [54] |
Sedighiani K, Diehl M, Traka K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves [J]. Int. J. Plast., 2020, 134: 102779
|
| [55] |
Schroeder H, Fichtner P F P. On the coarsening mechanisms of helium bubbles—Ostwald ripening versus migration and coalescence [J]. J. Nucl. Mater., 1991, 179-181: 1007
|
| [56] |
Ding X J, Zhao J J, Huang H, et al. Effect of damage rate on the kinetics of void nucleation and growth by phase field modeling for materials under irradiations [J]. J. Nucl. Mater., 2016, 480: 120
|
| [57] |
Stoller R E, Osetsky Y N. An atomistic assessment of helium behavior in iron [J]. J. Nucl. Mater., 2014, 455: 258
|
| [58] |
Sun T Y, Niu T J, Shang Z X, et al. An in situ study on the effect of grain boundaries on helium bubble formation in dual beam irradiated FeCrAl alloy [J]. Acta Mater., 2023, 245: 118613
|
| [59] |
Pavan A R, Sakthivel T, Arivazhagan B, et al. A comparative study on the microstructural evolution and mechanical behavior of 316LN stainless steel welds made using hot-wire tungsten inert gas and activated tungsten inert gas process [J]. J. Mater. Eng. Perform., 2024, 33: 13618
|
| [60] |
Patra A, McDowell D L. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material [J]. Acta Mater., 2016, 110: 364
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|