Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 173-190    DOI: 10.11900/0412.1961.2025.00239
  研究论文 本期目录 | 过刊浏览 |
316H钢及其焊缝金属辐照He泡演化与力学行为的相场-晶体塑性耦合模拟
王栋1,2,3, 徐连勇1,2,3(), 赵雷1,2,3(), 韩永典1,2,3, 宋恺1,2,3
1 天津大学 材料科学与工程学院 天津 300350
2 天津大学 天津市现代连接技术重点实验室 天津 300350
3 天津大学 高性能轧辊材料与复合成形全国重点实验室 天津 300350
Phase Field and Crystal Plasticity Simulation of Irradiation-Induced He Bubbles Evolution and Mechanical Behavior in 316H Steel and Weld Metal
WANG Dong1,2,3, XU Lianyong1,2,3(), ZHAO Lei1,2,3(), HAN Yongdian1,2,3, SONG Kai1,2,3
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350, China
3 State Key Laboratory of High Performance Roll Materials and Composite Forming, Tianjin 300350, China
引用本文:

王栋, 徐连勇, 赵雷, 韩永典, 宋恺. 316H钢及其焊缝金属辐照He泡演化与力学行为的相场-晶体塑性耦合模拟[J]. 金属学报, 2026, 62(1): 173-190.
Dong WANG, Lianyong XU, Lei ZHAO, Yongdian HAN, Kai SONG. Phase Field and Crystal Plasticity Simulation of Irradiation-Induced He Bubbles Evolution and Mechanical Behavior in 316H Steel and Weld Metal[J]. Acta Metall Sin, 2026, 62(1): 173-190.

全文: PDF(4190 KB)   HTML
摘要: 

316H钢是第四代先进核反应堆重要的候选结构材料。在服役过程中,材料长期处于高温、辐照以及复杂应力的服役环境,工况极其严苛。尤其是由于核嬗变导致的辐照He泡会造成严重的辐照脆化,加速材料的失效。为阐明He泡在母材和焊缝金属中的演化规律及其对力学性能的影响。本工作基于He泡相场和晶体塑性耦合求解框架,模拟了316H钢及其焊缝金属中He泡的演化行为以及He泡对力学行为的影响。结果表明,He泡通过吸收过饱和空位和He原子形核生长,并在后期通过合并和Ostwald熟化进行长大。焊缝金属中高密度位错偏置吸收间隙原子导致空位浓度过剩以及位错作为快速扩散通道,共同导致了He泡的快速生长。在小应变时,外应变与He泡内压共同主导应力-应变响应,宏观应力为负值;随着外应变增加,应力-应变响应则由外应变主导。拉伸过程中,He泡与基体界面周围出现了显著的应力集中,相应地,应力集中处也发生了较大的塑性变形。在外加应变为4%时,焊缝金属中形成了显著的塑性变形带。

关键词 316H钢焊缝金属辐照He泡相场模拟    
Abstract

316H steel is an important structural material candidate for Generation-IV advanced nuclear reactors. During service, the material operates under conditions of high temperature, irradiation, and complex stress for extended durations, and the working environment is extremely harsh. In particular, He bubbles, generated through nuclear transmutation under irradiation, can cause severe irradiation embrittlement and accelerate the failure of the material. To clarify the role of He bubbles in the degradation of 316H steel and weld metal, this study proposes a coupled computational framework that integrates the phase field model and crystal plasticity. Within this framework, the nucleation, growth, and coalescence of He bubbles in 316H steel and weld metal were simulated, and their mechanical responses were systematically analyzed. The research shows that He bubbles nucleate and grow by absorbing supersaturated vacancies and He atoms. In the later stage, they grow through coalescence and Ostwald ripening processes. As the He bubble size increases, the internal pressure gradually decreases until reaching an equilibrium state. The high density of dislocations in the weld metal, which preferentially absorb interstitial atoms, results in an increased vacancy concentration. Meanwhile, dislocations act as rapid diffusion channels. These two factors together contribute to the rapid growth of He bubbles. An increase in diffusion capacity does not change the final proportion of He bubbles; instead, it accelerates the nucleation and growth processes, thereby promoting the kinetic evolution of He bubbles in the weld metal. At small strains, the stress-strain response is governed by the effects of external strain and the internal pressure of He bubbles, with the macroscopic stress value being negative. As the external strain increases, the stress-strain response becomes influenced by the external strain. During tensile deformation, significant stress concentration arises at the He bubble-matrix interface, leading to considerable plastic deformation in these regions. At 4% applied strain, distinct plastic deformation bands form in both 316H steel and the weld metal. However, due to strain localization in the weld metal, the degree of plastic deformation is greater than that observed in 316H steel.

Key words316H steel    weld metal    irradiation    He bubble    phase field simulation
收稿日期: 2025-08-20     
ZTFLH:  TG47  
基金资助:国家杰出青年科学基金项目(52025052)
通讯作者: 徐连勇,xulianyong@tju.edu.cn,主要从事焊接结构的寿命设计与评价、高性能长寿命焊接制造等方面的研究赵 雷,zhaolei85@tju.edu.cn,主要从事焊接结构的性能评价、损伤评估及寿命预测研究
作者简介: 王 栋,男,1995年生,博士生
MaterialCrNiMnMoSiCoCNFe
316H17.2412.171.812.560.370.0190.0470.064Bal.
Welding wire18.7012.801.672.320.490.0080.0520.057Bal.
表1  316H钢母材及焊丝的化学成分 (mass fraction / %)
图1  316H钢母材及其焊缝金属的微观组织
图2  550 ℃条件下316H钢He泡中He原子的浓度随半径的变化趋势
ParameterValueUnit
Va[32]7.06cm3·mol-1
Evf[12]3.2 × 10-19J
Egf[12]6.4 × 10-19J
Ω[32]1.17 × 10-29m3
bv[33]0.039nm3·atom-1
a[33]0.0034J·m3·mol-2
γs[34]1.82J·m-2
表2  He泡相场模拟中所用的热力学参数[12,32~34]
图3  550 ℃下He泡演化相场模型中基体与He泡的自由能密度
图4  相场和晶体塑性耦合计算流程
ParameterValueUnit
KHP[39]1.1MPa·m
dgrain50 (base), 100 (weld)μm
ρ1 × 1012 (base), 6 × 1013 (weld)m-2
γ˙0[24]1 × 10-3s-1
n[53]5-
kmul0.03 (base), 0.02 (weld)-
Rcp2 × 10-9nm
βp0.015 (base), 0.01 (weld)
krecov200
C11, C12, C44157, 114, 99GPa
μ[39]88 - 3 × 10-5T2 - 5.6 × 10-3TGPa
表3  晶体塑性模型参数
图5  过饱和基体中单个He泡的演变
图6  辐照条件下多个He泡的演变
图7  辐照条件下He泡占比和数量的演化
图8  He泡生长过程中的内压演化及He浓度演化
图9  相场模拟与实验的He泡微观组织对比
图10  316H钢母材的焊缝金属He泡直径及其分布的相场模拟与实验定量统计对比
图11  不同空位与He原子比例以及不同扩散条件下的He泡演化及其占比和尺寸变化
图12  不同He泡占比与尺寸的He泡微观组织
图13  He泡占比和尺寸对应力-应变曲线的影响
图14  316H钢和焊缝金属变形过程中的应力和塑性应变分布
[1] Li Y, Wang F, Zheng Y M, et al. Multiaxial isothermal and thermomechanical fatigue behavior of 316H stainless steel welded joint and life prediction [J]. Int. J. Fatigue, 2026, 203: 109295
[2] Gu Z M, Zhong M, Gong Y, et al. Tracking martensitic substructure evolution in the heat-affected zone of P91 steel: Integrating CSLM observation and post-mortem microstructural analysis [J]. Metall. Mater. Trans., 2025, 56A: 4744
[3] Lin Y R, Chen W Y, Tan L Z, et al. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures [J]. Acta Mater., 2021, 217: 117165
[4] Li J T, Beyerlein I J, Han W Z. Helium irradiation-induced ultrahigh hardening in niobium [J]. Acta Mater., 2022, 226: 117656
[5] Jublot-Leclerc S, Lescoat M L, Fortuna F, et al. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel [J]. J. Nucl. Mater., 2015, 466: 646
[6] Chen Y, Li Y P, Ran G, et al. In-situ TEM observation of the evolution of dislocation loops and helium bubbles in a pre helium irradiated FeCrAl alloy during annealing [J]. Prog. Nucl. Energy, 2020, 129: 103502
[7] Villacampa I, Chen J C, Spätig P, et al. Helium bubble evolution and hardening in 316L by post-implantation annealing [J]. J. Nucl. Mater., 2018, 500: 389
[8] Judge C D, Gauquelin N, Walters L, et al. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen [J]. J. Nucl. Mater., 2015, 457: 165
[9] Miura T, Fujii K, Fukuya K. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel [J]. J. Nucl. Mater., 2015, 457: 279
[10] Fu C L, Li J J, Bai J J, et al. Evolution of helium bubbles in SLM 316L stainless steel irradiated with helium ions at different temperatures [J]. J. Nucl. Mater., 2022, 562: 153609
[11] Bai J J, Li J J, Fu C L, et al. Effect of He ion irradiation on the GH3535 weld metal at high temperature [J]. Acta Metall. Sin., 2024, 60: 299
[11] 白菊菊, 李健健, 付崇龙 等. GH3535合金焊缝高温氦离子辐照效应 [J]. 金属学报, 2024, 60: 299
[12] Wang D, Xu L Y, Zhao L, et al. Microstructural and mechanical responses of 316H and weld metal under Helium irradiation at 550 oC [J]. J. Nucl. Mater., 2025, 605: 155564
[13] Jelea A. Molecular dynamics modeling of helium bubbles in austenitic steels [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2018, 425B: 50
[14] Stan M, Ramirez J C, Cristea P, et al. Models and simulations of nuclear fuel materials properties [J]. J. Alloys Compd., 2007, 444-445: 415
[15] Hu S Y, Henager Jr C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels [J]. J. Nucl. Mater., 2009, 392: 292
[16] Millett P C, El-Azab A, Rokkam S, et al. Phase-field simulation of irradiated metals: Part I: Void kinetics [J]. Comput. Mater. Sci., 2011, 50: 949
[17] Millett P C, El-Azab A, Wolf D. Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics [J]. Comput. Mater. Sci., 2011, 50: 960
[18] Li Y L, Hu S Y, Montgomery R, et al. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2013, 303B: 62
[19] Hu S Y, Burkes D E, Lavender C A, et al. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation [J]. J. Nucl. Mater., 2016, 479: 202
[20] Liang L Y, Mei Z G, Soo Kim Y, et al. Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel [J]. Comput. Mater. Sci., 2018, 145: 86
[21] Jiang Y B, Sun Z P, Wang D J, et al. Effects of grain boundaries on the evolution of radiation-induced bubbles in polycrystalline tungsten: A phase-field simulation [J]. J. Nucl. Mater., 2024, 588: 154757
[22] Liu C Y, Feng Z H, Zhang Y P, et al. Phase field simulation of bubble evolution dynamics in Fe-Cr alloys [J]. Acta Metall. Sin., 2024, 60: 1279
[22] 刘彩艳, 冯泽华, 张云鹏 等. Fe-Cr合金气泡演化动力学的相场法模拟 [J]. 金属学报, 2024, 60: 1279
[23] Hu S Y, Beeler B. Gas bubble evolution in polycrystalline UMo fuels under elastic-plastic deformation: A phase-field model with crystal-plasticity [J]. Front. Mater., 2021, 8: 682667
[24] Demir E, Horton E W, Mokhtarishirazabad M, et al. Grain size and shape dependent crystal plasticity finite element model and its application to electron beam welded SS316L [J]. J. Mech. Phys. Solids, 2023, 178: 105331
[25] Gan L F, Zhu B Y, Ling C, et al. Micro-mechanics investigation of heterogeneous deformation fields and crack initiation driven by the local stored energy density in austenitic stainless steel welded joints [J]. J. Mech. Phys. Solids, 2024, 188: 105652
[26] Jiang H, Yang Z Y, Guo Z F, et al. Interpretation of mechanical properties gradient in laser-welded joints: Experiments and grain morphology-dependent crystal plasticity modeling [J]. J. Mater. Res. Technol., 2024, 33: 5934
[27] Wang D, Zhao L, Xu L Y, et al. A microstructure-based study of irradiation hardening in stainless steel: Experiment and phase field modeling [J]. J. Nucl. Mater., 2022, 569: 153940
[28] Xiao Z H, Wang Y F, Hu S Y, et al. A quantitative phase-field model of gas bubble evolution in UO2 [J]. Comput. Mater. Sci., 2020, 184: 109867
[29] Jiang Y B, Xin Y, Liu W B, et al. Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy [J]. Nucl. Eng. Technol., 2022, 54: 226
[30] Wang Y F, Xiao Z H, Hu S Y, et al. A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient [J]. Comput. Mater. Sci., 2020, 183: 109817
[31] Wang Y F, Xiao Z H, Shi S Q. Xe gas bubbles evolution in UO2 fuels—A phase field simulation [J]. Sci. Sin. Phys. Mech. Astron., 2019, 49: 114607
[31] 王亚峰, 肖知华, 石三强. UO2核燃料中Xe气泡演化的相场模型与分析 [J]. 中国科学: 物理学 力学 天文学, 2019, 49: 114607
[32] Magomedov M N. Parameters of the vacancy formation and self-diffusion in the iron [J]. J. Phys. Chem. Solids, 2023, 172: 111084
[33] Wen P, Tonks M R, Phillpot S R, et al. The effect of stress on the migration of He gas bubbles under a thermal gradient in Fe by phase-field modeling [J]. Comput. Mater. Sci., 2022, 209: 111392
[34] Caro A, Schwen D, Hetherly J, et al. The capillarity equation at the nanoscale: Gas bubbles in metals [J]. Acta Mater., 2015, 89: 14
[35] Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: John Wiley Sons, 1983: 201
[36] Jiang W, Hu T C, Aagesen L K, et al. Three-dimensional phase-field modeling of porosity dependent intergranular fracture in UO2 [J]. Comput. Mater. Sci., 2020, 171: 109269
[37] Li Y L, Hu S Y, Barker E, et al. Effect of grain structure and strain rate on dynamic recrystallization and deformation behavior: A phase field-crystal plasticity model [J]. Comput. Mater. Sci., 2020, 180: 109707
[38] Demir E, Martinez-Pechero A, Hardie C, et al. OXFORD-UMAT: An efficient and versatile crystal plasticity framework [J]. Int. J. Solids Struct., 2025, 307: 113110
[39] Monnet G, Mai C. Prediction of irradiation hardening in austenitic stainless steels: Analytical and crystal plasticity studies [J]. J. Nucl. Mater., 2019, 518: 316
[40] Kubin L, Devincre B, Hoc T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals [J]. Acta Mater., 2008, 56: 6040
[41] Patra A, McDowell D L. Crystal plasticity-based constitutive modelling of irradiated bcc structures [J]. Philos. Mag., 2012, 92: 861
[42] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
[43] Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
[44] Cahn J W, Allen S M. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics [J]. J. Phys. Colloq., 1977, 38: C7-51
[45] Jokisaari A M, Permann C, Thornton K. A nucleation algorithm for the coupled conserved-nonconserved phase field model [J]. Comput. Mater. Sci., 2016, 112: 128
[46] Aagesen L K, Jokisaari A, Schwen D, et al. A phase-field model for void and gas bubble superlattice formation in irradiated solids [J]. Comput. Mater. Sci., 2022, 215: 111772
[47] Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations [J]. Comput. Phys. Commun., 1998, 108: 147
[48] Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput. Methods Appl. Mech. Eng., 1998, 157: 69
[49] Lebensohn R A, Kanjarla A K, Eisenlohr P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials [J]. Int. J. Plast., 2012, 32-33: 59
[50] Aagesen L K, Schwen D, Tonks M R, et al. Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO2 nuclear fuel [J]. Comput. Mater. Sci., 2019, 161: 35
[51] Kohnert A A, Capolungo L. The kinetics of static recovery by dislocation climb [J]. npj Comput. Mater., 2022, 8: 104
[52] Stechauner G, Kozeschnik E. Self-diffusion in grain boundaries and dislocation pipes in Al, Fe, and Ni and application to AlN precipitation in steel [J]. J. Mater. Eng. Perform., 2014, 23: 1576
[53] Chen W B, Ding X B, Zhai L H, et al. Effect of δ-ferrite decomposition on the tensile properties of one modified 316H stainless steel: Experimental investigations and crystal plastic finite element simulations [J]. Mater. Sci. Eng., 2024, A915: 147224
[54] Sedighiani K, Diehl M, Traka K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves [J]. Int. J. Plast., 2020, 134: 102779
[55] Schroeder H, Fichtner P F P. On the coarsening mechanisms of helium bubbles—Ostwald ripening versus migration and coalescence [J]. J. Nucl. Mater., 1991, 179-181: 1007
[56] Ding X J, Zhao J J, Huang H, et al. Effect of damage rate on the kinetics of void nucleation and growth by phase field modeling for materials under irradiations [J]. J. Nucl. Mater., 2016, 480: 120
[57] Stoller R E, Osetsky Y N. An atomistic assessment of helium behavior in iron [J]. J. Nucl. Mater., 2014, 455: 258
[58] Sun T Y, Niu T J, Shang Z X, et al. An in situ study on the effect of grain boundaries on helium bubble formation in dual beam irradiated FeCrAl alloy [J]. Acta Mater., 2023, 245: 118613
[59] Pavan A R, Sakthivel T, Arivazhagan B, et al. A comparative study on the microstructural evolution and mechanical behavior of 316LN stainless steel welds made using hot-wire tungsten inert gas and activated tungsten inert gas process [J]. J. Mater. Eng. Perform., 2024, 33: 13618
[60] Patra A, McDowell D L. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material [J]. Acta Mater., 2016, 110: 364
[1] 陆善平, 孙健. 高强钢焊缝金属组织设计与强韧化机理研究进展[J]. 金属学报, 2026, 62(1): 1-16.
[2] 曹睿, 刘梓申. 高强钢焊缝金属强韧性研究进展[J]. 金属学报, 2026, 62(1): 64-80.
[3] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[4] 周婷婷, 赵福祺, 周洪强, 张凤国, 殷建伟. He泡液态金属铝的动态拉伸断裂机制与损伤模型[J]. 金属学报, 2025, 61(4): 643-652.
[5] 刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
[6] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[7] 郭松源, 柳文波, 杨庆成, 戚晓勇, 恽迪. 黏性烧结过程的相场模拟[J]. 金属学报, 2024, 60(12): 1691-1700.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[10] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[11] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[15] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.