Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1691-1700    DOI: 10.11900/0412.1961.2022.00445
  研究论文 本期目录 | 过刊浏览 |
黏性烧结过程的相场模拟
郭松源1, 柳文波1,2(), 杨庆成3, 戚晓勇1,2, 恽迪1,2
1 西安交通大学 能源与动力工程学院 西安 710049
2 西安交通大学 陕西省先进核能技术重点实验室 西安 710049
3 上海大学 上海市能源工程力学重点实验室 上海 200072
Phase Field Simulation of Viscous Sintering
GUO Songyuan1, LIU Wenbo1,2(), YANG Qingcheng3, QI Xiaoyong1,2, YUN Di1,2
1 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University, Xi'an 710049, China
3 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
引用本文:

郭松源, 柳文波, 杨庆成, 戚晓勇, 恽迪. 黏性烧结过程的相场模拟[J]. 金属学报, 2024, 60(12): 1691-1700.
Songyuan GUO, Wenbo LIU, Qingcheng YANG, Xiaoyong QI, Di YUN. Phase Field Simulation of Viscous Sintering[J]. Acta Metall Sin, 2024, 60(12): 1691-1700.

全文: PDF(1581 KB)   HTML
摘要: 

为研究黏性烧结过程的组织形貌和物理性能的变化规律,本工作建立了黏性烧结过程的相场模型,分析了烧结颗粒的形貌、轴向速度场和压强场的演化结果。模拟结果表明:在表面张力驱动下,2个等大颗粒逐渐合并为1个圆形颗粒,演变过程中质量守恒;速度场在颗粒内部分为接触应变区域与刚体运动区域;颗粒内外压强差与颗粒曲率成正比关系。进一步分析发现,2个圆形颗粒的颈球比与收缩率在演化的开始阶段变化很大,符合黏弹性接触的规律;而在演化后期的变化较慢,此时2个圆形颗粒的颈球比与收缩率接近平衡状态的值;随着迁移率的增大,演化速率加快,但对稳定状态的形貌影响不大。多颗粒的模拟结果表明,黏性烧结过程中气孔会发生球化,随后缓慢消失,出现致密化;相同模拟条件下,尺寸较小的气孔演化速率更快。

关键词 相场模拟黏弹性接触黏性烧结气孔演化    
Abstract

The presence of a liquid phase, which provides capillary force during viscous sintering, can accelerate the evolution of sintered particles. Due to the difficulty of coupling about the Navier-Stokes equations, however, it is quite challenging to obtain simulation results that meet the laws of physics. In the present study, a phase field model of the viscous sintering process is established, and the morphology, velocity field, and pressure field evolutions of the sintered particles are analyzed. First, the Cahn-Hilliard and Navier-Stokes equations are solved using the finite difference method and the predictor-corrector method. In the finite difference method, the upwind and central difference schemes are combined. The simulation results show that under the drive of surface tension, two circular particles gradually merge into one. The velocity field is divided into a pure straining region and a rigid body motion region inside the particle; the pressure difference between the inside and outside of the particles is proportional to the curvature of the particles. Then, the contact radius and shrinkage of the two circular particles are calculated, and then a curve over time is drawn. The results show that they vary drastically at the beginning stage of evolution and satisfy the law of viscoelastic contact. In the later stage of evolution, the change becomes slower when the contact radius and shrinkage of the two circular particles are close to the values of the equilibrium state. With the increase in mobility, the evolution rate accelerates, but the morphology of the stable state is almost unchanged. The evolution of multiparticles and pores is also simulated. The results show that the pores in the viscous sintering process are initially spheroidized and then slowly disappear, resulting in densification. Under the same simulation conditions, the smaller pores evolve faster.

Key wordsphase field simulation    viscoelastic contact    viscous sintering    pore evolution
收稿日期: 2022-09-09     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金委员会与中国工程物理研究院联合基金(NSAF联合基金)项目(U2130105);之江实验室科研攻关项目(2021PE0AC02);中国核工业集团有限公司领创科研项目
通讯作者: 柳文波,liuwenbo@xjtu.edu.cn,主要从事核燃料和核材料的多尺度模拟研究
Corresponding author: LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn
作者简介: 郭松源,男,2000年生,硕士生
Physical parameterValueUnitRef.
ρliquid840kg·m-3[23]
ρgas0.806kg·m-3[23]
μliquid400pa·s[23]
μgas2.47pa·s[23]
M1 × 10-6-[12]
Δx0.825nm
σ0.03N·m-1[23]
表1  175℃下尼龙12的物理参数[12,23]
图1  半交错网格示意图
图2  等大双圆形颗粒烧结过程的形貌演化(a) 0 step (b) 2 × 104 step (c) 2 × 105 step (d) 1.2 × 106 step (e) 6 × 106 step (f) 4 × 107 step
图3  不同迁移率下颈球比随时间的变化关系
图4  不同迁移率下收缩率随时间的变化关系
图5  颗粒形貌演变与对应的水平方向的速度场分布
图6  沿水平方向对称轴上的相场变量和轴向速度场的变化曲线
图7  等大双圆形颗粒烧结过程的压强分布
图8  等大三颗粒烧结过程的形貌演化
图9  多颗粒烧结过程的形貌演化
1 German R M, translated by Jia C C, Chu K, Liu B W, et al. Sintering: From Empirical Observations to Scientific Principles [M]. Beijing: Chemical Industry Press, 2021: 5
1 兰德尔·杰曼著, 贾成厂, 褚 克, 刘博文等译. 烧结实践与科学原理 [M]. 北京: 化学工业出版社, 2021: 5
2 German R M, Suri P, Park S J. Review: Liquid phase sintering [J]. J. Mater. Sci., 2009, 44: 1
3 Pi H L, Shi X L, Xu X X. Effect of SiC-ZrC coating prepared by SiZr liquid phase sintering on the oxidation resistance of C/SiC composites [J]. Acta Metall. Sin., 2021, 57: 791
doi: 10.11900/0412.1961.2020.00357
3 皮慧龙, 石小磊, 徐兴祥. SiZr液相烧结法制备SiC-ZrC涂层对C/SiC复合材料抗氧化性能的影响 [J]. 金属学报, 2021, 57: 791
doi: 10.11900/0412.1961.2020.00357
4 Kraft T, Riedel H. Numerical simulation of solid state sintering; model and application [J]. J. Eur. Ceram. Soc., 2004, 24: 345
5 Van de Vorst G A L, Mattheij R M M. Numerical analysis of a 2-D viscous sintering problem with non-smooth boundaries [J]. Computing, 1992, 49: 239
6 Kuiken H K. Viscous sintering: The surface-tension-driven flow of a liquid form under the influence of curvature gradients at its surface [J]. J. Fluid Mech., 1990, 214: 503
7 Frenkel J J. Viscous flow of crystalline bodies under the action of surface tension [J]. J. Phys., 1945, 9: 385
8 Martínez-Herrera J I, Derby J J. Viscous sintering of spherical particles via finite element analysis [J]. J. Am. Ceram. Soc., 1995, 78: 645
9 Hiram Y, Nir A. A simulation of surface tension driven coalescence [J]. J. Colloid Interface Sci., 1983, 95: 462
10 Gross M, Steinbach I, Raabe D, et al. Viscous coalescence of droplets: A lattice Boltzmann study [J]. Phys. Fluids, 2013, 25: 052101
11 Braginsky M, Tikare V, Olevsky E. Numerical simulation of solid state sintering [J]. Int. J. Solids Struct., 2005, 42: 621
12 Yang Q C, Kirshtein A, Ji Y Z, et al. A thermodynamically consistent phase-field model for viscous sintering [J]. J. Am. Ceram. Soc., 2019, 102: 674
doi: 10.1111/jace.16021
13 Landau L D, Khalatikow I M. The Selected Works of L.D. Landau (English Translation) [M]. Oxford: Pergamon, 1963: 1
14 Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
14 孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
15 Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
16 Chockalingam K, Kouznetsova V G, Van der Sluis O, et al. 2D phase field modeling of sintering of silver nanoparticles [J]. Comput. Meth. Appl. Mech. Eng., 2016, 312: 492
17 Zhang X, Liao Y L. A phase-field model for solid-state selective laser sintering of metallic materials [J]. Powder Technol., 2018, 339: 677
18 Kumar V, Fang Z Z, Fife P C. Phase field simulations of grain growth during sintering of two unequal-sized particles [J]. Mater. Sci. Eng., 2010, A528: 254
19 Tegze G, Pusztai T, Gránásy L. Phase field simulation of liquid phase separation with fluid flow [J]. Mater. Sci. Eng., 2005, A413-414: 418
20 Soligo G, Roccon A, Soldati A. Mass-conservation-improved phase field methods for turbulent multiphase flow simulation [J]. Acta Mech., 2019, 230: 683
21 Gao Y J, Lu Y J, Kong L Y, et al. Phase field crystal model and its application for microstructure evolution of materials [J]. Acta Metall. Sin., 2018, 54: 278
doi: 10.11900/0412.1961.2017.00336
21 高英俊, 卢昱江, 孔令一 等. 晶体相场模型及其在材料微结构演化中的应用 [J]. 金属学报, 2018, 54: 278
doi: 10.11900/0412.1961.2017.00336
22 Zografos K, Afonso A M, Poole R J, et al. A viscoelastic two-phase solver using a phase-field approach [J]. J. Non-Newton. Fluid Mech., 2020, 284: 104364
23 Balemans C, Hulsen M A, Anderson P D. Sintering of two viscoelastic particles: A computational approach [J]. Appl. Sci., 2017, 7: 516
24 Kim J. Phase-field models for multi-component fluid flows [J]. Commun. Comput. Phys., 2012, 12: 613
25 Lin Y Y, Hui C Y, Jagota A. The role of viscoelastic adhesive contact in the sintering of polymeric particles [J]. J. Colloid Interface Sci., 2001, 237: 267
26 Kamyabi M, Sotudeh-Gharebagh R, Zarghami R, et al. Principles of viscous sintering in amorphous powders: A critical review [J]. Chem. Eng. Res. Des., 2017, 125: 328
27 Wakai F, Katsura K, Kanchika S, et al. Sintering force behind the viscous sintering of two particles [J]. Acta Mater., 2016, 109: 292
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[7] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[8] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[9] 荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
[10] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[11] 满蛟 张骥华 戎咏华. 马氏体相变中应变自协调效应的三维相场研究[J]. 金属学报, 2010, 46(7): 775-780.
[12] 高英俊 罗志荣 张少义 黄创高. 相场方法研究Al-Ag合金γ相周围溶质析出过程[J]. 金属学报, 2010, 46(12): 1473-1480.
[13] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[14] 刘苹莉; 马星桥; 褚武扬; 乔利杰 . PZT铁电陶瓷力电耦合的三维相场模拟[J]. 金属学报, 2008, 44(8): 927-932 .
[15] 由园; 闫牧夫; 陈义强 . 低体积分数相析出过程的相场模拟[J]. 金属学报, 2008, 44(10): 1171-1174 .