Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1438-1448    DOI: 10.11900/0412.1961.2023.00451
  研究论文 本期目录 | 过刊浏览 |
增材制造钛合金等效弹性张量的细观力学建模与实验研究
谭若涵1, 宋永锋1,2, 陈超3, 李丹3, 成庶1, 李雄兵1()
1 中南大学 交通运输工程学院 长沙 410075
2 广东工业大学 省部共建精密电子制造技术与装备国家重点实验室 广州 510006
3 中南大学 粉末冶金研究院 长沙 410083
Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys
TAN Ruohan1, SONG Yongfeng1,2, CHEN Chao3, LI Dan3, CHENG Shu1, LI Xiongbing1()
1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
2 State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
3 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
引用本文:

谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
Ruohan TAN, Yongfeng SONG, Chao CHEN, Dan LI, Shu CHENG, Xiongbing LI. Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. Acta Metall Sin, 2025, 61(9): 1438-1448.

全文: PDF(2522 KB)   HTML
摘要: 

孔隙和织构均为增材制造(AM)多晶体金属的重要特征,但已有的细观力学模型无法研究2者的耦合作用对材料力学性能的影响机理。因此,本工作构建了双相金属材料的改进Mori-Tanaka (modified Mori-Tanaka,MMT)模型,在此基础上预测AM Ti-6Al-4V合金的等效弹性张量,进而探究AM 多晶体材料的微观结构对材料宏观力学性能的影响规律。本模型结合了传统MT模型和微分法,可综合分析各向异性多晶体织构和孔隙2个耦合因素与宏观力学性能的内在联系。通过有损和无损实验,研究了2种孔隙率和织构的AM Ti-6Al-4V试块的相变行为、晶粒取向分布函数、孔隙率和孔隙形貌特征。为验证理论预测的准确性,采用稀疏法与所建立模型进行对比分析;同时进行拉伸实验和超声实验,基于MMT模型得到的Young's模量与拉伸实验结果的平均绝对百分比误差(MAPE)分别为0.87%和2.51%,基于MMT模型得到的等效弹性刚度张量(Ceff)与超声实验结果的MAPE分别为9.47%和4.45%。可见,实验结果从力学和无损检测2个角度验证了MMT模型的有效性,为研究AM 多晶体材料的微观结构对宏观力学性能的作用机理提供了一种有效的细观力学分析方法。

关键词 等效弹性张量增材制造钛合金各向异性改进MT模型孔隙织构    
Abstract

Additively manufactured (AM) Ti-6Al-4V alloys are known for their lightweight and superior mechanical properties and are increasingly being favored in the aerospace, energy, and biomedical industries. Among the available AM technologies, selective laser melting (SLM) stands out for its ability to fabricate complex-shaped Ti-6Al-4V efficiently and economically through near-net-shape manufacturing. Despite their advantages, SLM-produced parts often suffer from mechanical anisotropy and contain microdefects such as pores, cracks, and residual stresses, restricting their wider application. Addressing these issues requires a thorough understanding of the effects of texture and porosity on the mechanical properties of AM materials, which is necessary for developing components that comply with strict industry standards. Previous research has predominantly focused on studying the impact of texture or porosity on material properties, overlooking the interplay between these two critical factors. This work introduces an advanced modified Mori-Tanaka (MMT) model that simultaneously considers both texture and porosity in dual-phase AM Ti-6Al-4V alloys. This model enhances the traditional Mori-Tanaka approach by integrating it with the differential method, facilitating a nuanced analysis of how texture and porosity jointly influence the mechanical behavior of polycrystals. For model development, phase transitions and grain orientations are characterized using EBSD, whereas the 3D Gaussian distribution function describes the texture distribution within the polycrystal. Micro/nano computed tomography (CT) plays a pivotal role in determining the volume fraction and morphology of pores, providing crucial data for the model. These parameters were incorporated into the mesomechanical model to analyze the effective elastic stiffness tensor and Young's modulus, quantifying their collective impact on the alloy's mechanical properties. To validate the model, tensile and ultrasonic tests are conducted for two samples with different porosities and textures and compared their outcomes to evaluate the material's mechanical behavior, which exhibits characteristics of transverse isotropy. The comparison highlights the MMT model's superior precision, especially at higher porosity levels, with mean absolute percentage errors (MAPE) between Young's modulus obtained from the MMT model and the tensile test for two samples were 0.87% and 2.51%, respectively. Similarly, the MAPE between the effective elastic stiffness tensor derived from the MMT model and the ultrasonic test were 9.47% and 4.45%, respectively. These findings underscore the model's effectiveness in predicting material properties and its potential as a robust tool for exploring the interactions between microstructural elements and macroscopic mechanical properties of AM polycrystalline materials.

Key wordseffective elastic tensor    additive manufacturing    titanium alloy    anisotropy    modified MT model    porosity    texture
收稿日期: 2023-11-14     
ZTFLH:  TB301  
基金资助:湖南省科技创新领军人才项目(2023RC1015);湖南省自然科学基金项目(2023JJ60159)
通讯作者: 李雄兵,lixb213@csu.edu.cn,主要从事无损检测与评价的研究
Corresponding author: LI Xiongbing, professor, Tel: 15084761518, E-mail: lixb213@csu.edu.cn
作者简介: 谭若涵,女,1993年生,博士
图1  增材制造(AM) Ti-6Al-4V合金(MMT)模型的流程图
Phasec11c12c13c33c44
α170927019252
β138108--51
表1  Ti-6Al-4V合金的单晶弹性常数(c(r))[19] (GPa)
SamplePhasefp / %qpJ
Aβ0.86133843.94
α87.6113689183.31
Bβ1.66258922.20
α81.3412709801.26
表2  AM Ti-6Al-4V试块的EBSD分析结果
图2  AM Ti-6Al-4V试块中晶粒的微观结构及取向分布
图3  AM Ti-6Al-4V试块Euler角(θ)的概率密度分布图
图4  AM Ti-6Al-4V试块的孔隙重构
图5  AM Ti-6Al-4V试块孔隙体积和球度的概率密度分布图
SampleDirectionPmax / kNγ / GPa
AHorizontal14.52109.46
Vertical13.88125.11
BHorizontal15.56115.56
Vertical16.09126.12
表3  AM Ti-6Al-4V试块在不同方向的最大载荷和Young's模量
SampleC11effC22effC33effC44effC55effC66eff
A142.7 ± 1.0143.4 ± 0.2137.4 ± 0.444.1 ± 0.744.6 ± 0.443.2 ± 0.4
B169.4 ± 0.7168.6 ± 0.7171.6 ± 0.147.1 ± 2.246.8 ± 2.145.2 ± 1.2
表4  超声实验测得AM Ti-6Al-4V试块的等效弹性刚度张量( Ceff) (GPa)
图6  MMT模型得到的AM Ti-6Al-4V试块的 Ceff
图7  MMT模型与稀疏法得到的AM Ti-6Al-4V试块的 Ceff
SampleIndicatorHorizontal γ / GPaVertical γ / GPaMAPE / %EC / %
AV-MMT107.86124.760.8799.51
R-MMT104.16121.663.8098.06
H-MMT106.02123.212.3398.80
V-SM107.41122.611.9399.02
R-SM103.74119.484.8697.53
H-SM105.58121.053.4098.28
Tensile test109.46125.11
BV-MMT115.46132.252.5198.20
R-MMT110.61128.232.9898.42
H-MMT111.55129.002.9398.49
V-SM114.99132.352.7298.19
R-SM110.58127.822.8398.45
H-SM112.80130.102.7798.59
Tensile test115.56126.12
表5  基于MMT模型和稀疏法以及拉伸实验测得的AM Ti-6Al-4V试块不同方向的Young's模量及其平均绝对百分比误差(MAPE)和均等系数(EC)
SampleIndicator

C11eff

GPa

C22eff

GPa

C33eff

GPa

C44eff

GPa

C55eff

GPa

C66eff

GPa

MAPE

%

EC

%

AV-MMT152.60163.09157.3648.4240.5044.069.4794.35
Ultrasonic143.68143.23136.9244.1144.9843.18
BV-MMT165.65175.67170.3451.2543.3146.974.4598.49
Ultrasonic169.43169.60171.6047.0946.7945.21
表6  基于MMT模型和超声实验获得的AM Ti-6Al-4V试块 Ceff及其MAPE和EC
[1] Tshephe T S, Akinwamide S O, Olevsky E, et al. Additive manufacturing of titanium-based alloys—A review of methods, properties, challenges, and prospects [J]. Heliyon, 2022, 8(3): e09041
[2] Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
[2] 李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
[3] Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 15
[3] 宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 15
[4] Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
[5] Liu W C, Huang J, Liu J W, et al. Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests [J]. Int. J. Fatigue, 2021, 148: 106203
[6] Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
[6] 任永明, 林 鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160
[7] Cheng M, Lu Z G, Wu J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98: 177
doi: 10.1016/j.jmst.2021.04.066
[8] Zhao T F, Zhang L, Huang M J. Effective elasticity tensors of fiber-reinforced composite materials with 2D or 3D fiber distribution coefficients [J]. Acta Mech., 2019, 230: 4175
[9] Man C S, Zhao D. Remarks on texture coefficients of polycrystals with improper crystallite symmetry [J]. J. Elast., 2020, 138: 111
[10] Sha G F. Explicit backscattering coefficient for ultrasonic wave propagating in hexagonal polycrystals with fiber texture [J]. J. Nondestr. Eval., 2018, 37: 51
[11] Li J, Rokhlin S I. Elastic wave scattering in random anisotropic solids [J]. Int. J. Solids Struct., 2016, 78-79: 110
[12] Park I, Moon J, Bae S, et al. Application of micro-CT to Mori-Tanaka method for non-randomly oriented pores in air-entrained cement pastes [J]. Constr. Build. Mater., 2020, 255: 119342
[13] Giraud A, Huynh Q V, Hoxha D, et al. Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions [J]. Mech. Mater., 2007, 39: 1006
[14] Yan H B. Determination of the effective modulus of the syntactic foam containing hollow spheres by differential scheme and Mori-Tanaka method [J]. J. Beijing Univ. Aeronaut. Astronaut., 2000, 26: 688
[14] 严寒冰. 用微分法及Mori-Tanaka法求解复合泡沫塑料的有效模量 [J]. 北京航空航天大学学报, 2000, 26: 688
[15] Gui J C, Ma T S, Chen P, et al. Anisotropic damage to hard brittle shale with stress and hydration coupling [J]. Energies, 2018, 11: 926
[16] Zhang Q G, Fan X Y, Chen P, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration [J]. Eng. Geol., 2020, 269: 105547
[17] Asef M R, Farrokhrouz M. A semi-empirical relation between static and dynamic elastic modulus [J]. J. Petrol. Sci. Eng., 2017, 157: 359
[18] Tan R H, Song Y F, Li X B, et al. Effective elastic stiffness tensor and ultrasonic velocities for 3D printed polycrystals with pores and texture [J]. Res. Nondestr. Eval., 2022, 33: 196
[19] Warwick J L W, Coakley J, Raghunathan S L, et al. Effect of texture on load partitioning in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 4117
[20] Cho J H, Rollett A D, Oh K H. Determination of volume fractions of texture components with standard distributions in Euler space [J]. Metall. Mater. Trans., 2004A, 35: 1075
[21] Gong S, Li Z, Zhao Y Y. An extended Mori-Tanaka model for the elastic moduli of porous materials of finite size [J]. Acta Mater., 2011, 59: 6820
[22] Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, A616: 1
[23] Bozzolo N, Gerspach F, Sawina G, et al. Accuracy of orientation distribution function determination based on EBSD data—A case study of a recrystallized low alloyed Zr sheet [J]. J. Microsc., 2007, 227: 275
[24] Simonelli M, Tse Y Y, Tuck C. On the texture formation of selective laser melted Ti-6Al-4V [J]. Metall. Mater. Trans., 2014, 45A: 2863
[25] Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
[25] 黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
[26] Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting [J]. Mater. Des., 2016, 105: 160
[27] Ge J G, Yan X C, Lei Y P, et al. A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures [J]. Mater. Des., 2021, 198: 109292
[28] Liu Z, Liu J R, Zhao Z B, et al. Microstructure and tensile property of TC4 alloy produced via electron beam rapid manufacturing [J]. Acta Metall. Sin., 2019, 55: 692
doi: 10.11900/0412.1961.2019.00007
[28] 刘 征, 刘建荣, 赵子博 等. 电子束快速成形制备TC4合金的组织和拉伸性能分析 [J]. 金属学报, 2019, 55: 692
[29] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
[30] Yuan M D, Dai A B, Ma J T, et al. Nondestructive measurement of anisotropic elastic constants of selective laser melted 316L based on a tri-mode ultrasonic method [J]. Meas. Sci. Technol., 2023, 34: 045101
[31] Dai A B, Yuan M D, Wu J W, et al. Nondestructive characterization of elastic constants for 316L parts by selective laser melting based on dual-mode ultrasonic transducer [J]. Chin. J. Sci. Instrum., 2021, 42(6): 95
[31] 戴安帮, 袁懋诞, 吴俊伟 等. 基于双模式超声换能器的选择性激光熔化316L制件弹性常数无损表征研究 [J]. 仪器仪表学报, 2021, 42(6): 95
[32] Prioul R, Bakulin A, Bakulin V. Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: Theory and laboratory verification [J]. Geophysics, 2004, 69: 415
[33] Mishra N, Das K. A Mori-Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions [J]. SN Appl. Sci., 2020, 2: 1206
[34] Wu J. Thermal expansion coefficient prediction of asphalt mixture with the Eshelby equivalent inclusion theory [J]. Appl. Mech. Mater., 2014, 584-586: 1071
[35] Zhang Y, Han L. Foundation of Mesomechanics [M]. Beijing: Science Press, 2014: 91
[35] 张 研, 韩 林. 细观力学基础 [M]. 北京: 科学出版社, 2014: 91
[36] Yang J J, Yu H C, Wang Z M, et al. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy [J]. Mater. Charact., 2017, 127: 137
[37] Yang L, Zhao F, Jiang L, et al. Development of composition and heat treatment process of 2000 MPa grade spring steels assisted by machine learning [J]. Acta Metall. Sin., 2023, 59: 1499
doi: 10.11900/0412.1961.2022.00047
[37] 杨 累, 赵 帆, 姜 磊 等. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发 [J]. 金属学报, 2023, 59: 1499
[38] Zhang S Y, Lin X, Chen J, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing [J]. Rare Met. Mater. Eng., 2007, 36: 1839
[38] 张霜银, 林 鑫, 陈 静 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响 [J]. 稀有金属材料与工程, 2007, 36: 1839
[1] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[2] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[3] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[4] 徐小严, 方超, 邱建科, 张蒙蒙, 史栋刚, 马英杰, 雷家峰, 杨锐. 峰值应力对Ti6242压气机盘锻件室温保载效应的影响[J]. 金属学报, 2025, 61(8): 1141-1152.
[5] 尚宏春, 田中旺, 牛兰杰, 范晨阳, 张哲伟, 娄燕山. 5182-O铝合金屈服演化行为表征及晶体塑性模拟[J]. 金属学报, 2025, 61(8): 1276-1292.
[6] 范荣磊, 陈明和, 吴迪鹏, 武永. 基于晶体塑性模型预测TA32钛合金损伤及高温成形极限[J]. 金属学报, 2025, 61(8): 1293-1304.
[7] 游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.
[8] 周小卫, 郭云, 荆雪艳, 王宇鑫. 仿生苍耳球冠织构的Ni-Co-Zn超疏水合金涂层及其抗覆冰性能[J]. 金属学报, 2025, 61(5): 783-796.
[9] 赵焯雅, 孟令健, 林鹏, 曹晓卿. TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理[J]. 金属学报, 2025, 61(5): 717-730.
[10] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[11] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[12] 齐敏, 王倩, 马英杰, 曹贺萌, 黄森森, 雷家峰, 杨锐. Ti6246钛合金 βα 相变中晶界 α 相生长行为及其对微织构的影响[J]. 金属学报, 2025, 61(2): 265-277.
[13] 韩启飞, 狄兴隆, 郭跃岭, 叶水俊, 郑元翾, 刘长猛. 电弧熔丝增材制造Mg/Mg双金属的组织与力学性能[J]. 金属学报, 2025, 61(2): 211-225.
[14] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[15] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.