|
|
增材制造钛合金等效弹性张量的细观力学建模与实验研究 |
谭若涵1, 宋永锋1,2, 陈超3, 李丹3, 成庶1, 李雄兵1( ) |
1 中南大学 交通运输工程学院 长沙 410075 2 广东工业大学 省部共建精密电子制造技术与装备国家重点实验室 广州 510006 3 中南大学 粉末冶金研究院 长沙 410083 |
|
Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys |
TAN Ruohan1, SONG Yongfeng1,2, CHEN Chao3, LI Dan3, CHENG Shu1, LI Xiongbing1( ) |
1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China 2 State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China 3 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
引用本文:
谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
Ruohan TAN,
Yongfeng SONG,
Chao CHEN,
Dan LI,
Shu CHENG,
Xiongbing LI.
Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. Acta Metall Sin, 2025, 61(9): 1438-1448.
[1] |
Tshephe T S, Akinwamide S O, Olevsky E, et al. Additive manufacturing of titanium-based alloys—A review of methods, properties, challenges, and prospects [J]. Heliyon, 2022, 8(3): e09041
|
[2] |
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
[2] |
李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
[3] |
Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 15
|
[3] |
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 15
|
[4] |
Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metall. Mater. Trans., 2011, 42A: 3190
|
[5] |
Liu W C, Huang J, Liu J W, et al. Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests [J]. Int. J. Fatigue, 2021, 148: 106203
|
[6] |
Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160
|
[6] |
任永明, 林 鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160
|
[7] |
Cheng M, Lu Z G, Wu J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98: 177
doi: 10.1016/j.jmst.2021.04.066
|
[8] |
Zhao T F, Zhang L, Huang M J. Effective elasticity tensors of fiber-reinforced composite materials with 2D or 3D fiber distribution coefficients [J]. Acta Mech., 2019, 230: 4175
|
[9] |
Man C S, Zhao D. Remarks on texture coefficients of polycrystals with improper crystallite symmetry [J]. J. Elast., 2020, 138: 111
|
[10] |
Sha G F. Explicit backscattering coefficient for ultrasonic wave propagating in hexagonal polycrystals with fiber texture [J]. J. Nondestr. Eval., 2018, 37: 51
|
[11] |
Li J, Rokhlin S I. Elastic wave scattering in random anisotropic solids [J]. Int. J. Solids Struct., 2016, 78-79: 110
|
[12] |
Park I, Moon J, Bae S, et al. Application of micro-CT to Mori-Tanaka method for non-randomly oriented pores in air-entrained cement pastes [J]. Constr. Build. Mater., 2020, 255: 119342
|
[13] |
Giraud A, Huynh Q V, Hoxha D, et al. Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions [J]. Mech. Mater., 2007, 39: 1006
|
[14] |
Yan H B. Determination of the effective modulus of the syntactic foam containing hollow spheres by differential scheme and Mori-Tanaka method [J]. J. Beijing Univ. Aeronaut. Astronaut., 2000, 26: 688
|
[14] |
严寒冰. 用微分法及Mori-Tanaka法求解复合泡沫塑料的有效模量 [J]. 北京航空航天大学学报, 2000, 26: 688
|
[15] |
Gui J C, Ma T S, Chen P, et al. Anisotropic damage to hard brittle shale with stress and hydration coupling [J]. Energies, 2018, 11: 926
|
[16] |
Zhang Q G, Fan X Y, Chen P, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration [J]. Eng. Geol., 2020, 269: 105547
|
[17] |
Asef M R, Farrokhrouz M. A semi-empirical relation between static and dynamic elastic modulus [J]. J. Petrol. Sci. Eng., 2017, 157: 359
|
[18] |
Tan R H, Song Y F, Li X B, et al. Effective elastic stiffness tensor and ultrasonic velocities for 3D printed polycrystals with pores and texture [J]. Res. Nondestr. Eval., 2022, 33: 196
|
[19] |
Warwick J L W, Coakley J, Raghunathan S L, et al. Effect of texture on load partitioning in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 4117
|
[20] |
Cho J H, Rollett A D, Oh K H. Determination of volume fractions of texture components with standard distributions in Euler space [J]. Metall. Mater. Trans., 2004A, 35: 1075
|
[21] |
Gong S, Li Z, Zhao Y Y. An extended Mori-Tanaka model for the elastic moduli of porous materials of finite size [J]. Acta Mater., 2011, 59: 6820
|
[22] |
Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, A616: 1
|
[23] |
Bozzolo N, Gerspach F, Sawina G, et al. Accuracy of orientation distribution function determination based on EBSD data—A case study of a recrystallized low alloyed Zr sheet [J]. J. Microsc., 2007, 227: 275
|
[24] |
Simonelli M, Tse Y Y, Tuck C. On the texture formation of selective laser melted Ti-6Al-4V [J]. Metall. Mater. Trans., 2014, 45A: 2863
|
[25] |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
[25] |
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
|
[26] |
Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting [J]. Mater. Des., 2016, 105: 160
|
[27] |
Ge J G, Yan X C, Lei Y P, et al. A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures [J]. Mater. Des., 2021, 198: 109292
|
[28] |
Liu Z, Liu J R, Zhao Z B, et al. Microstructure and tensile property of TC4 alloy produced via electron beam rapid manufacturing [J]. Acta Metall. Sin., 2019, 55: 692
doi: 10.11900/0412.1961.2019.00007
|
[28] |
刘 征, 刘建荣, 赵子博 等. 电子束快速成形制备TC4合金的组织和拉伸性能分析 [J]. 金属学报, 2019, 55: 692
|
[29] |
Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
|
[30] |
Yuan M D, Dai A B, Ma J T, et al. Nondestructive measurement of anisotropic elastic constants of selective laser melted 316L based on a tri-mode ultrasonic method [J]. Meas. Sci. Technol., 2023, 34: 045101
|
[31] |
Dai A B, Yuan M D, Wu J W, et al. Nondestructive characterization of elastic constants for 316L parts by selective laser melting based on dual-mode ultrasonic transducer [J]. Chin. J. Sci. Instrum., 2021, 42(6): 95
|
[31] |
戴安帮, 袁懋诞, 吴俊伟 等. 基于双模式超声换能器的选择性激光熔化316L制件弹性常数无损表征研究 [J]. 仪器仪表学报, 2021, 42(6): 95
|
[32] |
Prioul R, Bakulin A, Bakulin V. Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: Theory and laboratory verification [J]. Geophysics, 2004, 69: 415
|
[33] |
Mishra N, Das K. A Mori-Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions [J]. SN Appl. Sci., 2020, 2: 1206
|
[34] |
Wu J. Thermal expansion coefficient prediction of asphalt mixture with the Eshelby equivalent inclusion theory [J]. Appl. Mech. Mater., 2014, 584-586: 1071
|
[35] |
Zhang Y, Han L. Foundation of Mesomechanics [M]. Beijing: Science Press, 2014: 91
|
[35] |
张 研, 韩 林. 细观力学基础 [M]. 北京: 科学出版社, 2014: 91
|
[36] |
Yang J J, Yu H C, Wang Z M, et al. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy [J]. Mater. Charact., 2017, 127: 137
|
[37] |
Yang L, Zhao F, Jiang L, et al. Development of composition and heat treatment process of 2000 MPa grade spring steels assisted by machine learning [J]. Acta Metall. Sin., 2023, 59: 1499
doi: 10.11900/0412.1961.2022.00047
|
[37] |
杨 累, 赵 帆, 姜 磊 等. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发 [J]. 金属学报, 2023, 59: 1499
|
[38] |
Zhang S Y, Lin X, Chen J, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6Al-4V titanium alloy after laser rapid forming processing [J]. Rare Met. Mater. Eng., 2007, 36: 1839
|
[38] |
张霜银, 林 鑫, 陈 静 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响 [J]. 稀有金属材料与工程, 2007, 36: 1839
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|