Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1276-1292    DOI: 10.11900/0412.1961.2024.00421
  研究论文 本期目录 | 过刊浏览 |
5182-O铝合金屈服演化行为表征及晶体塑性模拟
尚宏春1, 田中旺1,2(), 牛兰杰1, 范晨阳1, 张哲伟3, 娄燕山4()
1.西安机电信息技术研究所 机电动态控制重点实验室 西安 710065
2.北京理工大学 机电学院 北京 100081
3.陆装驻西安地区军事代表局 西安 710065
4.西安交通大学 机械工程学院 西安 710065
Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy
SHANG Hongchun1, TIAN Zhongwang1,2(), NIU Lanjie1, FAN Chenyang1, ZHANG Zhewei3, LOU Yanshan4()
1.Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an Institute of Electromechanical Information Technology, Xi'an 710065, China
2.School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
3.Military Representative Bureau of the Army Equipment Department in Xi'an, Xi'an 710065, China
4.School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710065, China
引用本文:

尚宏春, 田中旺, 牛兰杰, 范晨阳, 张哲伟, 娄燕山. 5182-O铝合金屈服演化行为表征及晶体塑性模拟[J]. 金属学报, 2025, 61(8): 1276-1292.
Hongchun SHANG, Zhongwang TIAN, Lanjie NIU, Chenyang FAN, Zhewei ZHANG, Yanshan LOU. Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy[J]. Acta Metall Sin, 2025, 61(8): 1276-1292.

全文: PDF(5152 KB)   HTML
摘要: 

为表征5182-O铝合金的屈服演化行为,并利用晶体塑性模拟深入理解其塑性变形特性,本工作通过单向拉伸、平面应变拉伸、剪切等实验,研究了5182-O铝合金在不同应力状态下的力学性能。首先通过逆向工程方法精确标定5182-O铝合金的硬化行为,然后利用pDrucker屈服方程解析计算对塑性变形特性进行表征。此外,采用晶体塑性有限元模拟结合代表性体积单元建模,对不同应力状态和晶粒取向条件下孔洞的演化进行分析。结果表明,5182-O铝合金的各向异性强度差异均低于1%,但不同应力状态下其最大强度差异约为8%。因此,针对由各向异性和应力状态所引起的硬化差异进行合理建模。基于非关联流动准则,pDrucker屈服函数的标定结果与实验结果间良好的一致性表明,该模型在不同加载方向上均具有较高的预测精度。晶体塑性模拟结果表明,基于累积塑性变形和归一化体积分数,应力三轴度和晶粒取向与孔洞演变密切相关。

关键词 屈服演化应力状态各向异性晶体塑性代表性体积单元    
Abstract

The development of lightweight materials presents challenges to constitutive modeling and numerical analysis of lightweight components. The hardening of lightweight materials varies more under different stress states than with inherent anisotropy. Although anisotropy is an intrinsic property of rolled sheets, accurate numerical analysis of lightweight components necessitates precise modeling of complex hardening under different loading conditions and anisotropy. This study characterizes the yield evolution of 5182-O aluminum alloy and employs crystal plasticity simulations to understand its plastic deformation characteristics. The mechanical properties of the 5182-O aluminum alloy were examined under different complex stress states through uniaxial tensile, plane-strain tensile, and shear experiments. Initially, the hardening behavior was accurately calibrated using inverse engineering, and plastic deformation characteristics were described analytically using the pDrucker yield equation. The pDrucker yield function was then extended to an analytical anisotropic form using an improved linear transformation tensor. The parameters of the yield function can be analyzed to model differential hardening across various stress states and anisotropic hardening along different loading directions. In addition, the evolution of voids under different stress states and grain orientations was analyzed using crystal plasticity finite element simulations combined with representative volume element (RVE) modeling. Void growth in polycrystalline materials strongly depends on the surrounding microstructure, such as grain morphology and crystallographic orientation. The RVE of single and polycrystalline aggregates containing voids was constructed using a three-dimensional Voronoi mosaic. Crystal plasticity finite element simulations were conducted to perform several simulation experiments with different combinations of grain morphology and crystallographic orientation. Results demonstrated that the anisotropic strength difference of the 5182-O aluminum alloy was < 1%, whereas the maximum strength difference between different stress states was approximately 8%, highlighting the importance of accurately modeling hardening differences due to anisotropy and stress state. The comparison of the calibrated pDrucker yield function with the experimental values under the uncorrelated flow criterion demonstrated relatively high prediction accuracy for different loading directions. The proposed yield function accurately characterized the differential and anisotropic hardening of the 5182-O aluminum alloy under various stress states. Crystal plasticity simulations revealed a strong correlation between stress triaxiality and grain orientation with evolution based on cumulative plastic slip and normalized void volume fraction.

Key wordsyield evolution    stress state    anisotropy    crystal plasticity    representative volume element
收稿日期: 2024-12-10     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(52075423);国家自然科学基金项目(U2141214);国防科技重点实验室自主科研项目
通讯作者: 田中旺,tianzw129@163.com,主要从事引信技术研究;
娄燕山,ys.lou@xjtu.edu.cn,主要从事塑性本构理论研究
Corresponding author: TIAN Zhongwang, professor, Tel: 18049027662, E-mail: tianzw129@163.com;
作者简介: 尚宏春,男,1996年生,博士
图1  试样形状及尺寸示意图
图2  数字图像相关(DIC)三维全场应变测量分析系统照片
ItemParameterItemParameter
SoftwareXTOPStandard ranging630 mm
Image resolution2448 × 2048Depth of field≤ 300 mm
Optical zoom35xSubset size (pixels)31
Camera format400 mm × 300 mmAnalysis step size (pixels)6
表1  DIC分析系统的参数
图3  试样在不同应变下的DIC测试应变云图
图4  三种应力状态下的von Mises等效应力-等效塑性应变曲线
SpecimenKɛ0nABC
UT0559.600.00710.3289373.36130.6012.46
UT45504.100.00470.3544422.50160.1012.03
UT90446.200.00460.3463452.21181.7011.67
SS0398.150.01160.2658357.59165.6210.53
PST0466.920.00700.2696366.24143.1015.60
表2  不同硬化行为的标定参数
图 5  不同试样断口形貌的SEM像
图6  3种应力状态下5182-O铝合金的pDrucker函数参数的演变
图 7  不同等效塑性应变下5182-O铝合金的3D屈服面和实验结果对比
图8  各向同性和各向异性屈服面演化的对比
图9  单向拉伸状态下5182-O铝合金各向异性屈服强度的演化
图10  3种等效塑性应变下3D屈服面的演化
ParameterUnitValue
C11MPa91040
C12MPa51084
C44MPa25900
h0MPa80.6659
τsMPa46.3126
τ0MPa33.6519
q1
γ˙α0s-10.001
表3  晶体的塑性本构模型参数
图11  5182-O铝合金初态取向织构的EBSD分析
图12  1/8代表性体积单元(RVE)有限元网格模型
图13  5182-O铝合金初始取向及晶粒数量为400和500晶时取向织构的极图
图14  微观结构的横截面模型
图15  RVE模型的宏观应力状态
图16  单向拉伸、0.2应变条件下5182-O铝合金的累积塑性滑移云图和应变为0.0~0.2时剖面图
图17  单向压缩、0.2应变条件下5182-O铝合金的累积塑性滑移云图和应变为0.0~0.2时剖面图
图18  5182-O铝合金中归一化体积分数和主应变随等效塑性应变的演变
图19  不同应力状态下应变为0.2时5182-O铝合金的累积塑性滑移云图和剖面图
图20  不同应力状态下5182-O铝合金中归一化体积分数和主应变随等效塑性应变的演变
图21  不同等效塑性应变下多晶5182-O铝合金的累积塑性滑移云图及归一化体积分数和主应变随等效应变的演变
[1] Guo Y Q, Zhu X F, Yang Y, et al. Research state of lightweight material and manufacture processes in automotive industry [J]. Forg. Stamping Technol., 2015, 40(3): 1
[1] 郭玉琴, 朱新峰, 杨 艳 等. 汽车轻量化材料及制造工艺研究现状 [J]. 锻压技术, 2015, 40(3): 1
[2] Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 1705
[2] 刘 兵, 彭超群, 王日初 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20: 1705
[3] Ma Z Y, Xiao B L, Zhang J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand [J]. Acta Metall. Sin., 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
[3] 马宗义, 肖伯律, 张峻凡 等. 航天装备牵引下的铝基复合材料研究进展与展望 [J]. 金属学报, 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
[4] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy Environ. Sci., 2012, 5: 7854
[5] Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components [J]. Int. J. Lightweight Mater. Manuf., 2018, 1: 55
[6] Henriksson F, Johansen K. On material substitution in automotive BIWs—From steel to aluminum body sides [J]. Proc. CIRP, 2016, 50: 683
[7] Mori K I, Abe Y. A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation [J]. Int. J. Lightweight Mater. Manuf., 2018, 1: 1
[8] Liu M P, Xue Z L, Peng Z, et al. Effect of post-aging on microstructure and mechanical properties of an ultrafine-grained 6061 aluminum alloy [J]. Acta Metall. Sin., 2023, 59: 657
doi: 10.11900/0412.1961.2021.00237
[8] 刘满平, 薛周磊, 彭 振 等. 后时效对超细晶6061铝合金微观结构与力学性能的影响 [J]. 金属学报, 2023, 59: 657
doi: 10.11900/0412.1961.2021.00237
[9] Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry [J]. Mater. Sci. Eng., 2000, A280: 37
[10] Jin B H. Microstructure and properties of 5182 aluminum alloy automobile body sheet [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
[10] 金滨辉. 汽车车身用5182铝合金板组织与性能研究 [D]. 北京: 北京有色金属研究总院, 2013
[11] Pouraliakbar H, Howells A, Gallerneault M, et al. Fracture behavior of a rapidly solidified thin-strip continuous cast AA5182 Al-Mg alloy with the Portevin-Le Chatelier effect under varying strain rates [J]. J. Alloys Compd., 2024, 971: 172810
[12] Malopheyev S, Mironov S, Kaibyshev R. Portevin-Le Chatelier effect in heterogeneous microstructural condition produced by friction-stir processing of Al-Mg alloy [J]. Mater. Charact., 2023, 200: 112909
[13] Li F L, Fu R, Bai Y R, et al. Effects of initial grain size and strengthening phase on thermal deformation and recrystallization behavior of GH4096 superalloy [J]. Acta Metall. Sin., 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
[13] 李福林, 付 锐, 白云瑞 等. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响 [J]. 金属学报, 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
[14] Rowlands B S, Rae C, Galindo-Nava E. The Portevin-Le Chatelier effect in nickel-base superalloys: Origins, consequences and comparison to strain ageing in other alloy systems [J]. Prog. Mater. Sci., 2023, 132: 101038
[15] Wang K, Jin X, Jiao Z M, et al. Mechanical behaviors and deformation constitutive equations of CrFeNi medium-entropy alloys under tensile conditions from 77 K to 1073 K [J]. Acta Metall. Sin., 2023, 59: 277
doi: 10.11900/0412.1961.2021.00241
[15] 王 凯, 晋 玺, 焦志明 等. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程 [J]. 金属学报, 2023, 59: 277
[16] Zhang P, Liu G, Sun J. A critical review on the Portevin-Le Chatelier effect in aluminum alloys [J]. J. Cent. South Univ., 2022, 29: 744
[17] Min J Y, Hector Jr L G, Carsley J E, et al. Spatio-temporal characteristics of plastic instability in AA5182-O during biaxial deformation [J]. Mater. Des., 2015, 83: 786
[18] Lou Y S, Zhang S J, Yoon J W. Strength modeling of sheet metals from shear to plane strain tension [J]. Int. J. Plast., 2020, 134: 102813
[19] Drucker D C. Relation of experiments to mathematical theories of plasticity [J]. J. Appl. Mech., 1949, 16: 349
[20] Hou Y, Min J Y, Stoughton T B, et al. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation [J]. Int. J. Plast., 2020, 135: 102808
[21] Shang H C, Wang S C, Zhou C, et al. Analysis of electric pulse-assisted forming based on neural network plastic evolution model [J]. CIRP J. Manuf. Sci. Technol., 2024, 52: 100
[22] Shen F H, Münstermann S, Lian J H. An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging [J]. Int. J. Plast., 2020, 132: 102747
[23] Zhang C, Lou Y S. Characterization and modelling of evolving plasticity behaviour up to fracture for FCC and BCC metals [J]. J. Mater. Process. Technol., 2023, 317: 117997
[24] Engler O, Aretz H. A virtual materials testing approach to calibrate anisotropic yield functions for the simulation of earing during deep drawing of aluminium alloy sheet [J]. Mater. Sci. Eng., 2021, A818: 141389
[25] Guo N, Wang J, Sun C Y, et al. Analysis of size dependent earing evolution in micro deep drawing of TWIP steel by using crystal plasticity modeling [J]. Int. J. Mech. Sci., 2020, 165: 105200
[26] Tang T, Zhou G W, Li Z H, et al. A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method and its application to light weight alloys [J]. Int. J. Plast., 2019, 116: 159
[27] Liu W C, Huang J, Pang Y, et al. Multi-scale modelling of evolving plastic anisotropy during Al-alloy sheet forming [J]. Int. J. Mech. Sci., 2023, 247: 108168
[28] Wang S C, Shang H C, Zhang Z, et al. Multi-scale numerical investigation of deep drawing of 6K21 aluminum alloy by crystal plasticity and a stress-invariant based anisotropic yield function under non-associated flow rule [J]. J. Manuf. Processes, 2023, 102: 736
[29] Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropic materials [J]. Int. J. Plast., 1991, 7: 693
[30] Zhu J C, Liu J Q, Huang M S, et al. Investigation on intragranular and intergranular void growth and their competition in polycrystalline materials [J]. Int. J. Plast., 2022, 159: 103472
[31] Song M J, Geng S N, Qiu Y, et al. In-situ EBSD-DIC simulation of microstructure evolution of aluminum alloy welds [J]. Int. J. Mech. Sci., 2024, 284: 109741
[32] Toursangsaraki M, Du D F, Wang H M, et al. Crystal plasticity quantification of anisotropic tensile and fatigue properties in laser powder bed fused Inconel 718 superalloy [J]. Addit. Manuf., 2024, 89: 104300
[33] Guo X R, Shen J J. Modelling of the plastic behavior of Cu crystal with twinning-induced softening and strengthening effects [J]. Acta Metall. Sin., 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
[33] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟 [J]. 金属学报, 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
[34] Aburakhia A, Bonakdar A, Molavi-Zarandi M, et al. Deformation mechanisms of additively manufactured Hastelloy-X: A neutron diffraction experiment and crystal plasticity finite element modeling [J]. Mater. Des., 2022, 222: 111030
[35] Babu B, Lindgren L E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J]. Int. J. Plast., 2013, 50: 94
[1] 范荣磊, 陈明和, 吴迪鹏, 武永. 基于晶体塑性模型预测TA32钛合金损伤及高温成形极限[J]. 金属学报, 2025, 61(8): 1293-1304.
[2] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[3] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[4] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[5] 张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636.
[6] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[9] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[10] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[11] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[12] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[15] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.