|
|
5182-O铝合金屈服演化行为表征及晶体塑性模拟 |
尚宏春1, 田中旺1,2( ), 牛兰杰1, 范晨阳1, 张哲伟3, 娄燕山4( ) |
1.西安机电信息技术研究所 机电动态控制重点实验室 西安 710065 2.北京理工大学 机电学院 北京 100081 3.陆装驻西安地区军事代表局 西安 710065 4.西安交通大学 机械工程学院 西安 710065 |
|
Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy |
SHANG Hongchun1, TIAN Zhongwang1,2( ), NIU Lanjie1, FAN Chenyang1, ZHANG Zhewei3, LOU Yanshan4( ) |
1.Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an Institute of Electromechanical Information Technology, Xi'an 710065, China 2.School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China 3.Military Representative Bureau of the Army Equipment Department in Xi'an, Xi'an 710065, China 4.School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710065, China |
引用本文:
尚宏春, 田中旺, 牛兰杰, 范晨阳, 张哲伟, 娄燕山. 5182-O铝合金屈服演化行为表征及晶体塑性模拟[J]. 金属学报, 2025, 61(8): 1276-1292.
Hongchun SHANG,
Zhongwang TIAN,
Lanjie NIU,
Chenyang FAN,
Zhewei ZHANG,
Yanshan LOU.
Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy[J]. Acta Metall Sin, 2025, 61(8): 1276-1292.
[1] |
Guo Y Q, Zhu X F, Yang Y, et al. Research state of lightweight material and manufacture processes in automotive industry [J]. Forg. Stamping Technol., 2015, 40(3): 1
|
[1] |
郭玉琴, 朱新峰, 杨 艳 等. 汽车轻量化材料及制造工艺研究现状 [J]. 锻压技术, 2015, 40(3): 1
|
[2] |
Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. Chin. J. Nonferrous Met., 2010, 20: 1705
|
[2] |
刘 兵, 彭超群, 王日初 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20: 1705
|
[3] |
Ma Z Y, Xiao B L, Zhang J F, et al. Overview of research and development for aluminum matrix composites driven by aerospace equipment demand [J]. Acta Metall. Sin., 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
|
[3] |
马宗义, 肖伯律, 张峻凡 等. 航天装备牵引下的铝基复合材料研究进展与展望 [J]. 金属学报, 2023, 59: 457
doi: 10.11900/0412.1961.2022.00605
|
[4] |
Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy Environ. Sci., 2012, 5: 7854
|
[5] |
Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components [J]. Int. J. Lightweight Mater. Manuf., 2018, 1: 55
|
[6] |
Henriksson F, Johansen K. On material substitution in automotive BIWs—From steel to aluminum body sides [J]. Proc. CIRP, 2016, 50: 683
|
[7] |
Mori K I, Abe Y. A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation [J]. Int. J. Lightweight Mater. Manuf., 2018, 1: 1
|
[8] |
Liu M P, Xue Z L, Peng Z, et al. Effect of post-aging on microstructure and mechanical properties of an ultrafine-grained 6061 aluminum alloy [J]. Acta Metall. Sin., 2023, 59: 657
doi: 10.11900/0412.1961.2021.00237
|
[8] |
刘满平, 薛周磊, 彭 振 等. 后时效对超细晶6061铝合金微观结构与力学性能的影响 [J]. 金属学报, 2023, 59: 657
doi: 10.11900/0412.1961.2021.00237
|
[9] |
Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry [J]. Mater. Sci. Eng., 2000, A280: 37
|
[10] |
Jin B H. Microstructure and properties of 5182 aluminum alloy automobile body sheet [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
|
[10] |
金滨辉. 汽车车身用5182铝合金板组织与性能研究 [D]. 北京: 北京有色金属研究总院, 2013
|
[11] |
Pouraliakbar H, Howells A, Gallerneault M, et al. Fracture behavior of a rapidly solidified thin-strip continuous cast AA5182 Al-Mg alloy with the Portevin-Le Chatelier effect under varying strain rates [J]. J. Alloys Compd., 2024, 971: 172810
|
[12] |
Malopheyev S, Mironov S, Kaibyshev R. Portevin-Le Chatelier effect in heterogeneous microstructural condition produced by friction-stir processing of Al-Mg alloy [J]. Mater. Charact., 2023, 200: 112909
|
[13] |
Li F L, Fu R, Bai Y R, et al. Effects of initial grain size and strengthening phase on thermal deformation and recrystallization behavior of GH4096 superalloy [J]. Acta Metall. Sin., 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
|
[13] |
李福林, 付 锐, 白云瑞 等. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响 [J]. 金属学报, 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
|
[14] |
Rowlands B S, Rae C, Galindo-Nava E. The Portevin-Le Chatelier effect in nickel-base superalloys: Origins, consequences and comparison to strain ageing in other alloy systems [J]. Prog. Mater. Sci., 2023, 132: 101038
|
[15] |
Wang K, Jin X, Jiao Z M, et al. Mechanical behaviors and deformation constitutive equations of CrFeNi medium-entropy alloys under tensile conditions from 77 K to 1073 K [J]. Acta Metall. Sin., 2023, 59: 277
doi: 10.11900/0412.1961.2021.00241
|
[15] |
王 凯, 晋 玺, 焦志明 等. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程 [J]. 金属学报, 2023, 59: 277
|
[16] |
Zhang P, Liu G, Sun J. A critical review on the Portevin-Le Chatelier effect in aluminum alloys [J]. J. Cent. South Univ., 2022, 29: 744
|
[17] |
Min J Y, Hector Jr L G, Carsley J E, et al. Spatio-temporal characteristics of plastic instability in AA5182-O during biaxial deformation [J]. Mater. Des., 2015, 83: 786
|
[18] |
Lou Y S, Zhang S J, Yoon J W. Strength modeling of sheet metals from shear to plane strain tension [J]. Int. J. Plast., 2020, 134: 102813
|
[19] |
Drucker D C. Relation of experiments to mathematical theories of plasticity [J]. J. Appl. Mech., 1949, 16: 349
|
[20] |
Hou Y, Min J Y, Stoughton T B, et al. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation [J]. Int. J. Plast., 2020, 135: 102808
|
[21] |
Shang H C, Wang S C, Zhou C, et al. Analysis of electric pulse-assisted forming based on neural network plastic evolution model [J]. CIRP J. Manuf. Sci. Technol., 2024, 52: 100
|
[22] |
Shen F H, Münstermann S, Lian J H. An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging [J]. Int. J. Plast., 2020, 132: 102747
|
[23] |
Zhang C, Lou Y S. Characterization and modelling of evolving plasticity behaviour up to fracture for FCC and BCC metals [J]. J. Mater. Process. Technol., 2023, 317: 117997
|
[24] |
Engler O, Aretz H. A virtual materials testing approach to calibrate anisotropic yield functions for the simulation of earing during deep drawing of aluminium alloy sheet [J]. Mater. Sci. Eng., 2021, A818: 141389
|
[25] |
Guo N, Wang J, Sun C Y, et al. Analysis of size dependent earing evolution in micro deep drawing of TWIP steel by using crystal plasticity modeling [J]. Int. J. Mech. Sci., 2020, 165: 105200
|
[26] |
Tang T, Zhou G W, Li Z H, et al. A polycrystal plasticity based thermo-mechanical-dynamic recrystallization coupled modeling method and its application to light weight alloys [J]. Int. J. Plast., 2019, 116: 159
|
[27] |
Liu W C, Huang J, Pang Y, et al. Multi-scale modelling of evolving plastic anisotropy during Al-alloy sheet forming [J]. Int. J. Mech. Sci., 2023, 247: 108168
|
[28] |
Wang S C, Shang H C, Zhang Z, et al. Multi-scale numerical investigation of deep drawing of 6K21 aluminum alloy by crystal plasticity and a stress-invariant based anisotropic yield function under non-associated flow rule [J]. J. Manuf. Processes, 2023, 102: 736
|
[29] |
Barlat F, Lege D J, Brem J C. A six-component yield function for anisotropic materials [J]. Int. J. Plast., 1991, 7: 693
|
[30] |
Zhu J C, Liu J Q, Huang M S, et al. Investigation on intragranular and intergranular void growth and their competition in polycrystalline materials [J]. Int. J. Plast., 2022, 159: 103472
|
[31] |
Song M J, Geng S N, Qiu Y, et al. In-situ EBSD-DIC simulation of microstructure evolution of aluminum alloy welds [J]. Int. J. Mech. Sci., 2024, 284: 109741
|
[32] |
Toursangsaraki M, Du D F, Wang H M, et al. Crystal plasticity quantification of anisotropic tensile and fatigue properties in laser powder bed fused Inconel 718 superalloy [J]. Addit. Manuf., 2024, 89: 104300
|
[33] |
Guo X R, Shen J J. Modelling of the plastic behavior of Cu crystal with twinning-induced softening and strengthening effects [J]. Acta Metall. Sin., 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
|
[33] |
郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟 [J]. 金属学报, 2022, 58: 375
doi: 10.11900/0412.1961.2021.00230
|
[34] |
Aburakhia A, Bonakdar A, Molavi-Zarandi M, et al. Deformation mechanisms of additively manufactured Hastelloy-X: A neutron diffraction experiment and crystal plasticity finite element modeling [J]. Mater. Des., 2022, 222: 111030
|
[35] |
Babu B, Lindgren L E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V [J]. Int. J. Plast., 2013, 50: 94
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|