Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 857-865    DOI: 10.11900/0412.1961.2023.00158
  研究论文 本期目录 | 过刊浏览 |
Ti30Ni50Hf20 高温形状记忆合金的热变形行为
姜沐池1,2, 宫继双3, 杨兴远2, 任德春2(), 蔡雨升2, 李秉洋4,5, 吉海宾2(), 雷家峰1,2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中山大学 航空航天学院 广州 510275
4 中国航天科技创新研究院 先进材料与能源中心 北京 100163
5 北京大学 工学院 北京 100871
Hot Deformation Behavior of Ti30Ni50Hf20 High-Temperature Shape Memory Alloy
JIANG Muchi1,2, GONG Jishuang3, YANG Xingyuan2, REN Dechun2(), CAI Yusheng2, LI Bingyang4,5, JI Haibin2(), LEI Jiafeng1,2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, China
4 Advanced Materials and Energy Center, China Academy of Aerospace Science and Innovation, Beijing 100163, China
5 College of Engineering, Peking University, Beijing 100871, China
引用本文:

姜沐池, 宫继双, 杨兴远, 任德春, 蔡雨升, 李秉洋, 吉海宾, 雷家峰. Ti30Ni50Hf20 高温形状记忆合金的热变形行为[J]. 金属学报, 2025, 61(6): 857-865.
Muchi JIANG, Jishuang GONG, Xingyuan YANG, Dechun REN, Yusheng CAI, Bingyang LI, Haibin JI, Jiafeng LEI. Hot Deformation Behavior of Ti30Ni50Hf20 High-Temperature Shape Memory Alloy[J]. Acta Metall Sin, 2025, 61(6): 857-865.

全文: PDF(2561 KB)   HTML
摘要: 

Ti-Ni二元形状记忆合金的相变温度较低,限制了其在高温领域的应用,添加Hf元素可有效提升相变温度,但也会导致合金可变形性降低。因此,需要研究三元Ti-Ni-Hf高温形状合金热变形行为,确定热加工窗口。本工作采用真空感应熔炼制备Ti30Ni50Hf20高温形状记忆合金,利用OM和Gleeble-3800热模拟试验机等,对Ti30Ni50Hf20高温形状记忆合金的热变形行为进行了研究,变形温度为700、800和900 ℃,应变速率为0.01、0.1、1和10 s-1。结果表明,Ti30Ni50Hf20高温形状记忆合金在高温热变形过程中具有负温度、正应变敏感性,其流变应力随应变速率增加而增大,随变形温度升高而减小,且随变形温度升高再结晶现象增强;利用Arrhenius热变形表达式建立了Ti30Ni50Hf20高温形状记忆合金热加工的本构方程,其应变激活能为527.447 kJ/mol,根据本构方程计算得到的峰值应力理论值与实验值相吻合;根据Ti30Ni50Hf20高温形状记忆合金的动态模型建立其热加工图,确定其最佳热变形加工参数为变形温度880~900 ℃,应变速率0.01~0.04 s-1

关键词 高温形状记忆合金热变形行为本构方程热加工图    
Abstract

The application of Ti-Ni binary alloy at high temperatures is hindered by its low phase transition temperature. To enhance this transition temperature, researchers have explored the addition of metal Hf to Ti-Ni alloy. However, Ti-Ni-Hf high-temperature shape memory alloy exhibits brittleness and lacks favorable thermal deformation characteristics. Thus, a comprehensive investigation of its thermal deformation behavior is essential. During the hot working process, the material undergoes shape and microstructural changes, which are influenced by various processing factors. Consequently, optimizing processing parameters, including temperature, strain, and strain rate, is crucial for producing defect-free components with the desired microstructure. To optimize the hot working technology, single-pass compression tests on a Gleeble-3800 thermo-simulation machine were conducted and the hot deformation behavior and workability of the high-temperature shape memory alloy Ti30Ni50Hf20 were explored. These tests covered a temperature range of 700-900 oC and a strain rate range of 0.01-10 s-1. Flow stress-strain curves for Ti30Ni50Hf20 under different deformation conditions were generated and the evolution of the alloy's microstructure at varying deformation temperatures under a strain rate of 0.01 s-1, as well as at a deformation temperature of 900 oC with different deformation rates were examined. Utilizing a dynamic material model, a processing diagram was constructed and the impact of process parameters on the alloy's processing performance was analyzed. The results indicate that the recrystallization of Ti30Ni50Hf20 high-temperature shape memory alloy increases with the deformation temperature. This alloy exhibits negative temperature sensitivity and positive strain sensitivity, with flow stress increasing as the strain rate rises and decreasing with higher deformation temperatures. A constitutive equation for Ti30Ni50Hf20 high-temperature shape memory alloy during hot working is established, employing the Arrhenius hot deformation equation. The calculated strain activation energy was determined to be 527.447 kJ/mol. It revealed a consistent match between the theoretical and actual peak stress values. Through the assessment of the hot working diagram, the optimal processing parameters are identified as a deformation temperature in the range of 880-900 oC and a strain rate of 0.01-0.04 s-1.

Key wordshigh-temperature shape memory alloy    hot deformation behavior    constitutive equation    thermal processing map
收稿日期: 2023-04-10     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52205431)
通讯作者: 任德春,dcren14s@imr.ac.cn,主要从事钛合金及形状记忆合金材料研究;
吉海宾,hbji@imr.ac.cn,主要从事结构钛合金研发
Corresponding author: REN Dechun, associate professer, Tel: (024)83970131, E-mail: dcren14s@imr.ac.cn;
JI Haibin, professor, Tel: (024)83970131, E-mail: hbji@imr.ac.cn
作者简介: 姜沐池,男,1995年生,博士生
图1  铸态Ti30Ni50Hf20高温形状记忆合金的显微组织OM像和DSC曲线及Ti50Ni50形状记忆合金的DSC曲线
图2  不同温度和应变速率下Ti30Ni50Hf20高温形状记忆合金应力-应变曲线
图3  Ti30Ni50Hf20高温形状记忆合金峰值应力随温度和应变速率变化曲线
图4  不同变形温度下Ti30Ni50Hf20高温形状记忆合金的应力-应变曲线
图5  Ti30Ni50Hf20高温形状记忆合金峰值应力与应变速率的关系
图6  Ti30Ni50Hf20高温形状记忆合金ln[sinh(ασp)]与1000 / T的关系
图7  Ti30Ni50Hf20高温形状记忆合金lnZ与ln[sinh(ασp]的关系
图8  Ti30Ni50Hf20高温形状记忆合金峰值应力理论计算值与实验值对比图
图9  应变速率为0.01 s-1时不同变形温度下Ti30Ni50Hf20高温形状记忆合金显微组织的OM像
图10  变形温度为900 ℃时Ti30Ni50Hf20高温形状记忆合金在不同应变速率下显微组织的OM像
图11  Ti30Ni50Hf20高温形状记忆合金功率耗散图
图12  Ti30Ni50Hf20高温形状记忆合金热加工图
1 Singh S, Karthick S, Palani I A. Design and development of Cu-Al-Ni shape memory alloy coated optical fiber sensor for temperature sensing applications [J]. Vacuum, 2021, 191: 110369
2 Chen F, Qiu P C, Liu Y, et al. Microstructure and mechanical properties of NiTi shape memory alloys by in situ laser directed energy deposition [J]. Acta Metall. Sin., 2023, 59: 180
doi: 10.11900/0412.1961.2022.00425
2 陈 斐, 邱鹏程, 刘 洋 等. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能 [J]. 金属学报, 2023, 59: 180
3 Es-Souni M, Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications [J]. Anal. Bioanal. Chem., 2005, 381: 557
pmid: 15660223
4 Abbas A, Hung H Y, Lin P C, et al. Atomic layer deposited TiO2 films on an Equiatomic NiTi shape memory alloy for biomedical applications [J]. J. Alloys Compd., 2021, 886: 161282
5 Ren D C, Zhang H B, Li S J, et al. Properties of Ti-Ni pre-alloyed powder used for electron beam melting [J]. Rare Met. Mater. Eng., 2020, 49: 3218
5 任德春, 张慧博, 李述军 等. 电子束增材制造技术用Ti-Ni预合金粉末性能研究 [J]. 稀有金属材料与工程, 2020, 49: 3218
6 Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys [J]. Mater. Rep., 2016, 30(suppl.2) : 616
6 冯昭伟, 崔 跃, 尚再艳 等. 镍钛锆高温形状记忆合金的研究进展 [J]. 材料导报, 2016, 30(): 616
7 Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy [J]. Mater. Rep., 2020, 34: 148
7 李启泉, 李 岩, 马悦辉. 钛基高温形状记忆合金进展综述 [J]. 材料导报, 2020, 34: 148
8 Canadinc D, Trehern W, Ma J, et al. Ultra-high temperature multi-component shape memory alloys [J]. Scr. Mater., 2019, 158: 83
9 Yi X Y, Meng X L, Cai W, et al. Research progress in Ti-Ni-Hf high temperature shape memory alloys [J]. J. Mater. Eng., 2021, 49(3): 31
9 衣晓洋, 孟祥龙, 蔡 伟 等. Ti-Ni-Hf高温形状记忆合金的研究进展 [J]. 材料工程, 2021, 49(3): 31
doi: 10.11868/j.issn.1001-4381.2020.000531
10 Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys [J]. Mater. Mech. Eng., 2014, 38(1): 1
10 左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展 [J]. 机械工程材料, 2014, 38(1): 1
11 Meng X K, Zhao C W. Research progress on Ti-Ni-Hf high temperature shape memory alloy [J]. Mater. Rep., 2013, 27(3): 99
11 孟晓凯, 赵春旺. 钛镍铪高温形状记忆合金的研究进展 [J]. 材料导报, 2013, 27(3): 99
12 Liao B, Cao L F, Wu X D, et al. Hot deformation behavior and processing map of 7A55 aluminum alloy in double thermo-mechanical treatment process [J]. Nonferrous Met. Eng., 2021, 11(2): 1
12 廖 斌, 曹玲飞, 吴晓东 等. 双级形变热处理工艺中7A55铝合金热变形行为及热加工图 [J]. 有色金属工程, 2021, 11(2): 1
13 Ma X, Xu S Y, Zhou G, et al. Thermal deformation behavior of Ni60Ti40 shape memory alloy [J]. China Metall., 2022, 32(9): 26
13 马 昕, 许斯洋, 周 舸 等. Ni60Ti40形状记忆合金的热变形行为 [J]. 中国冶金, 2022, 32(9): 26
14 Zhu L Z, Lu S Q, Shu X Y, et al. Hot deformation behavior and constitutive relationships of Ni-40Ti shape memory alloy [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 425
14 朱乐宗, 鲁世强, 舒小勇 等. Ni-40Ti形状记忆合金热变形行为及本构关系的建立 [J]. 特种铸造及有色合金, 2016, 36: 425
15 Zhao Y N, Jiang S Y, Zhang Y Q, et al. Hot deformation behavior and processing map of NiTi shape memory alloy [J]. Appl. Sci. Technol., 2017, 44(1): 76
15 赵亚楠, 江树勇, 张艳秋 等. NiTi形状记忆合金的热变形行为及热加工图 [J]. 应用科技, 2017, 44(1): 76
16 Karelin R, Komarov V, Cherkasov V, et al. Production, mechanical and functional properties of long-length TiNiHf rods with high-temperature shape memory effect [J]. Materials, 2023, 16: 615
17 Tugrul H O, Akgul O, Kockar B. Creep behavior of 50at%Ni 25at%Ti 25at%Hf high temperature shape memory alloy under constant load [J]. Mater. Today Commun., 2022, 33: 104827
18 Meng X L, Cai W, Zheng Y F, et al. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 666
19 Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application [J]. Acta Metall. Sin., 2024, 60: 367
19 陈胜虎, 王琪玉, 姜海昌 等. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响 [J]. 金属学报, 2024, 60: 367
doi: 10.11900/0412.1961.2022.00039
20 Li F L, Fu R, Bai Y R, et al. Effects of initial grain size and strengthening phase on thermal deformation and recrystallization behavior of GH4096 superalloy [J]. Acta Metall. Sin., 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
20 李福林, 付 锐, 白云瑞 等. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响 [J]. 金属学报, 2023, 59: 855
doi: 10.11900/0412.1961.2021.00532
21 Luo L S, Wang F X, Wu X M, et al. Hot deformation and processing maps of low cost Ti-Al-V-Fe-O alloy [J]. Rare Met. Mater. Eng., 2018, 47: 2049
21 骆良顺, 王富鑫, 吴晓明 等. 低成本Ti-Al-V-Fe-O合金热变形行为及热加工图 [J]. 稀有金属材料与工程, 2018, 47: 2049
22 Liu Q Q, Lu Y, Zhang Y F, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy [J]. Acta Metall. Sin., 2021, 57: 1299
22 刘庆琦, 卢 晔, 张翼飞 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为 [J]. 金属学报, 2021, 57: 1299
doi: 10.11900/0412.1961.2020.00349
23 Bai X H, Zhao X C, Zhao D L, et al. Research on thermal deformation behavior of a high carbon Cr5 roll steel [J]. MW Met. Form., 2021, (12): 68
23 白兴红, 赵席春, 赵德利 等. 一种高碳Cr5轧辊钢的热变形行为研究 [J]. 金属加工热加工, 2021, (12): 68
24 Hua S M, Zhang P Z, Liu Z L, et al. Hot deformation behavior and hot working map of Cu-0.58Sn alloy [J]. Nonferrous Met. Eng., 2021, 11(10): 40
24 花思明, 张平则, 刘子利 等. Cu-0.58Sn合金热变形行为和热加工图 [J]. 有色金属工程, 2021, 11(10): 40
25 Tian L, Ji H B, Lei J F, et al. Study on constitutive relationship for hot deformation of Ti6242s Alloy [J]. Hot Work. Technol., 2013, 42(20): 97
25 田 录, 吉海宾, 雷家峰 等. Ti6242s合金本构关系的研究 [J]. 热加工工艺, 2013, 42(20): 97
26 Huang Y L, Wang J B, Ling X S, et al. Research development of hot processing map theory [J]. Mater. Rep., 2008, 22(suppl.3): 173
26 黄有林, 王建波, 凌学士 等. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(): 173
27 Semiatin S L, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure [J]. Mater. Sci. Eng., 1999, A263: 257
28 Bobbili R, Madhu V. Hot deformation behavior and processing maps of Ti-15Al-12Nb alloy [J]. Rare Met., 2022, 41: 2316
29 Lv B J, Peng J, Wang Y J, et al. Dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-0.9Y alloy by using hot compression test [J]. Mater. Des., 2014, 53: 357
30 Wei L L, Pan Q L, Zhou J, et al. Processing maps and flow instability analysis of Al-Zn-Mg-Cu-Zr alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2013, 44: 1798
30 韦莉莉, 潘清林, 周 坚 等. Al-Zn-Mg-Cu-Zr合金加工图的构建及失稳分析 [J]. 中南大学学报(自然科学版), 2013, 44: 1798
31 Lei W G, Han D, Zhang Y Q, et al. Hot deformation mechanism and processing map of TC4-DT titanium alloy [J]. Titanium Ind. Prog., 2015, 32(1): 20
31 雷文光, 韩 栋, 张永强 等. TC4-DT钛合金热变形机制及加工图 [J]. 钛工业进展, 2015, 32(1): 20
[1] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[2] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[3] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[4] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[6] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[7] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[8] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[9] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[10] 李俊儒, 龚臣, 陈列, 佐辉, 刘雅政. 10Cr12Ni3Mo2VN超超临界机组用叶片钢的热变形行为[J]. 金属学报, 2014, 50(9): 1063-1070.
[11] 付明杰, 韩秀全, 吴为, 张建伟. Ti-23Al-17Nb合金板材超塑性研究*[J]. 金属学报, 2014, 50(8): 955-961.
[12] 陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
[13] 余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
[14] 张慧博 金伟 杨锐. 内脊型TiNiFe记忆合金管接头拉脱力的三维有限元模拟[J]. 金属学报, 2012, 48(12): 1520-1524.
[15] 曹宇 邸洪双 张洁岑 张敬奇 马天军. 800H合金动态再结晶行为研究[J]. 金属学报, 2012, 48(10): 1175-1185.