Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1063-1070    DOI: 10.11900/0412.1961.2013.00848
  本期目录 | 过刊浏览 |
10Cr12Ni3Mo2VN超超临界机组用叶片钢的热变形行为
李俊儒1, 龚臣1, 陈列2, 佐辉2, 刘雅政1()
1 北京科技大学材料科学与工程学院, 北京 100083
2 西宁特殊钢股份有限公司, 西宁 810005
HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS
LI Junru1, GONG Chen1, CHEN Lie2, ZUO Hui2, LIU Yazheng1()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Xining Special Steel Co. Ltd., Xining 810005
引用本文:

李俊儒, 龚臣, 陈列, 佐辉, 刘雅政. 10Cr12Ni3Mo2VN超超临界机组用叶片钢的热变形行为[J]. 金属学报, 2014, 50(9): 1063-1070.
Junru LI, Chen GONG, Lie CHEN, Hui ZUO, Yazheng LIU. HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS[J]. Acta Metall Sin, 2014, 50(9): 1063-1070.

全文: PDF(6872 KB)   HTML
摘要: 

利用Gleeble-1500热模拟试验机对10Cr12Ni3Mo2VN钢进行压缩实验, 研究了变形温度为850~1200 ℃, 应变速率为0.01~10 s-1条件下的热变形行为. 结果表明, 随变形温度升高和应变速率降低, 再结晶晶粒尺寸增加. 变形温度1200 ℃, 经60%压缩变形后, 应变速率较高时再结晶晶粒呈等轴状, 应变速率较低时出现混晶. 通过传统直线拟合方法和Levenberg-Marquardt算法分别建立了热变形双曲正弦本构方程, 2种方法建立的本构方程均具有较高预测精度. 采用Levenberg-Marquardt算法可以一次性求解所有材料参数, 求解步骤简单, 结果可信. 利用加工硬化率-应力(q-s)曲线, 通过二次求导, 准确测得临界应变, 并建立了临界应变、峰值应变与Zener-Hollomon因子(Z因子)之间的关系方程.

关键词 10Cr12Ni3Mo2VN钢热变形本构方程临界应变    
Abstract

10Cr12Ni3Mo2VN steel is mainly made by forging and usually used to make last stage blades of ultra-supercritical unit, demanding strict standards of microstructure property because of its hard service environment, so it is necessary to conduct deep research on its hot deformation behavior. The hot deformation behavior of 10Cr12Ni3Mo2VN steel was investigated through high temperature compression tests on the Gleeble-1500 thermal-mechanical simulator at 850~1200 ℃ and strain rate range of 0.01~10 s-1. The results show that dynamic recrystallization becomes more prone to happen and recrystallized grain size increases with increasing temperature and decreasing strain rate. Isometric crystal and mixed structure appear after compressed 60% at 1200 ℃ with high and low strain rate respectively. A new method of establishing the hot deformation hyperbolic sine constitutive equation by Levenberg-Marquardt algorithm is proposed. Parameters of the constitutive equations established by traditional linear fitting and Levenberg-Marquardt algorithm have a similar value, and both of the constitutive equations have a high prediction precision, so the method of establishing constitutive equation by Levenberg-Marquardt algorithm is credible. However, Levenberg-Marquardt algorithm can get all parameters at the same time with fewer and simpler steps compared to traditional linear fitting. In addition, the values of critical strain for dynamic recrystallization initiation are determined from the work hardening rate-strain curves and a model related to Zener-Hollomon parameter for predicting critical and peak strain under different deformation paraments is established.

Key words10Cr12Ni3Mo2VN steel    hot deformation    constitutive equation    critical strain
    
ZTFLH:  TG142.73  
基金资助:* 国家高技术研究发展计划资助项目2012AA03A502
作者简介: null

李俊儒, 男, 1990年生, 博士生

图1  10Cr12Ni3Mo2VN钢在不同温度和应变速率热变形后的真应力-真应变曲线
图2  10Cr12Ni3Mo2VN钢在0.1 s-1应变速率下在不同变形温度压缩60%后的显微组织
图3  10Cr12Ni3Mo2VN钢在1200 ℃以不同应变速率压缩60%后的显微组织
图4  10Cr12Ni3Mo2VN钢在1200 ℃以0.1 s-1应变速率不同压缩量变形的显微组织
图5  Relationships between strain rate ε? and peak stressσp (k—slope) (a) ln ε? -ln σp (b) ln ε? - σp
图6  峰值应力与应变速率和变形温度之间的关系
图7  ln ε? +Q/(RT)与ln[sinh( ασp)]的关系
图8  σp实验值与预测值的相关性
图9  10Cr12Ni3Mo2VN钢的加工硬化率-真应力(θ-σ)曲线
图10  10Cr12Ni3Mo2VN钢的dθ/dσ-σ曲线和不同变形温度下的εc和εp
图11  lnεc和lnεp与lnZ的关系
[1] Xie X L, Yang G, Chen J C, Yang G X, Fan H. Heat Treat, 2009; 24(5): 35
[1] (谢学林, 杨 钢, 陈敬超, 杨功显, 范 华. 热处理, 2009; 24(5): 35)
[2] Masuyama F. ISIJ Int, 2001; 41: 612
[3] McQueen H J. Mater Sci Eng, 2004; A387: 203
[4] Fernández A I, Uranga P, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[5] Quan G Z, Li G S, Chen T, Wang Y X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643
[6] Chen M S, Lin Y C, Ma X S. Mater Sci Eng, 2012; A556: 260
[7] Cao J R, Liu Z D, Cheng S C, Yang G, Xie J X. Acta Metall Sin, 2007; 43: 35
[7] (曹金荣, 刘正东, 程世长, 杨 钢, 谢建新. 金属学报, 2007; 43: 35)
[8] Wu L Z, Li X S, Chen J, Zhang H B, Cui Z S. J Iron Steel Res Int, 2010; 17(7): 51
[9] Tan Z L, Xiang S. Trans Mater Heat Treat, 2013; 34(5): 42
[9] (谭智林, 向 嵩. 材料热处理学报, 2013; 34(5): 42)
[10] Wei J, Tang G B, Liu Z D. J Iron Steel Res, 2008; 20(3): 31
[10] (魏 洁, 唐广波, 刘正东. 钢铁研究学报, 2008; 20(3): 31)
[11] Dehghan-Manshadi A, Barnett M R, Hodgson P D. Metall Mater Trans, 2008; 39A: 1359
[12] Song R B, Zhang Y K, Wen X L, Jia Y S. Acta Metall Sin, 2011; 47: 34
[12] (宋仁伯, 张永坤, 文新理, 贾翼速. 金属学报, 2011; 47: 34)
[13] Wei H L, Liu G Q, Xiao X, Zhang M H. Acta Metall Sin, 2013; 49: 731
[13] (魏海莲, 刘国权, 肖 翔, 张明赫. 金属学报, 2013; 49: 731)
[14] Chen L, Wang L M, Du X J, Liu X. Acta Metall Sin, 2010; 46: 52
[14] (陈 雷, 王龙妹, 杜晓建, 刘 晓. 金属学报, 2010; 46: 52)
[15] Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378
[15] (王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)
[16] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[17] Jia B, Peng Y. Acta Metall Sin, 2011; 47: 507
[17] (贾 斌, 彭 艳. 金属学报, 2011; 47: 507)
[18] Cao Y, Di H S, Zhang J Q, Ma T J, Zhang J C. Acta Metall Sin, 2013; 49: 811
[18] (曹 宇, 邸洪双, 张敬奇, 马天军, 张洁岑. 金属学报, 2013; 49: 811)
[19] Kim S I, Yoo Y C. Mater Sci Eng, 2001; A311: 108
[20] Jonas J J, Quelennec X, Jiang L, Martin É. Acta Mater, 2009; 57: 2748
[21] Dehghan-Manshadi A, Barnett M R, Hodgson P D. Mater Sci Eng, 2008; A485: 664
[22] Belyakov A, Miura H, Sakai T. Mater Sci Eng, 1998; A255: 139
[23] El Wahabi M, Cabrera J M, Prado J M. Mater Sci Eng, 2003; A343: 116
[24] Cho J R, Jeong H S, Cha D J, Bae W B, Lee J W. J Mater Process Technol, 2005; 160: 1
[25] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127
[26] Laasraoui A, Jonas J J. Metall Trans, 1991; 22A: 1545
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[3] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[4] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[5] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[6] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[7] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[8] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[9] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[10] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[12] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[13] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[14] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.