Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 976-980    DOI: 10.3724/SP.J.1037.2013.00155
  论文 本期目录 | 过刊浏览 |
Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变
陈枫1),苏德喜1),佟运祥1),牛立群1),王海波2),李莉1)
1) 哈尔滨工程大学生物医学材料与工程研究中心, 哈尔滨 150001
2) 台州学院物理与电子工程学院, 台州318000
MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON
CHEN Feng1), SU Dexi1), TONG Yunxiang1), NIU Liqun1),WANG Haibo2), LI Li1)
1) Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001
2) College of Physics and Electronic Engineering, Taizhou University, Taizhou 318000
引用本文:

陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun, WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. Acta Metall Sin, 2013, 49(8): 976-980.

全文: PDF(791 KB)  
摘要: 

采用单辊快淬法制备了名义成分为Ni43Co7Mn41Sn9的高温形状记忆合金薄带,并对其微观组织结构和马氏体相变进行了研究. 结果表明, 薄带发生一步热弹性马氏体相变,经高温热处理后马氏体相变温度达到160℃. 制备态薄带的晶粒为微米级, 大小不一,介于2—18 μm之间, 与块体母合金相比晶粒明显细化, 且大部分晶粒沿垂直薄带表面方向生长.室温下, 薄带(消除内应力后)为正方结构的非调制马氏体, 马氏体变体内部由孪晶亚结构组成.热处理后薄带的相变温度有所下降, 但随着热处理温度的升高基本保持不变.

关键词 Ni-Co-Mn-Sn高温形状记忆合金薄带快速凝固马氏体相变    
Abstract

NiCoMnSn shape memory alloy (SMA) is expected to be a promising high temperature SMA. However, the brittleness has become a big obstacle for its practical application. It is known that, grain refining is effective in improving the ductility of a specific metallic alloy. The aim of this work is to investigate the effect of melt--spinning on grain refinement and martensitic transformation and provide a guideline for the development of NiCoMnSn SMA. Ni43Co7Mn41Sn9 high temperature SMA ribbon was prepared by a single-roll melt-spinning method. The microstructure and martensitic transformation were investigated by means of OM, SEM, TEM, XRD and DSC, respectively. The experimental results showed that, the ribbon had a chemical composition close to the master alloy and exhibited a thermoelastic martensitic transformation at about 160℃. The grains in the as-spun ribbon, ranging from 2 μm to 18 μm,were remarkably refined compared with the master alloy. In the as--prepared ribbon,most of the columnar grains grew along the direction vertical to the ribbon plane.At room temperature, non-modulated martensite (tetragonal structure) consisting of twin substructure is determined in the ribbon after relieving the internal stress. Transformation temperatures were lowered by 30℃ after heat treatment at 400℃ for 1 h and then kept nearly constant with the increase of heat treatment temperatures.

Key wordsNi-Co-Mn-Sn    high temperature shape memory alloy    ribbon    rapid solidification    martensitic transformation
收稿日期: 2013-04-02     
基金资助:

国家自然科学基金项目51101040, 浙江省自然科学基金项目Y4100618和中央高校基本科研业务费专项资金项目

作者简介: 陈枫, 男, 1976年生, 副教授

[1] Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A,Ishida K, Okamoto S, Kitakami O, Kanomata T.  Appl Phys Lett, 2006; 88: 192513

[2] Han Z D, Wang D H, Qian B, Feng J F, Jiang X F, Du Y W.  Jpn J Appl Phys, 2010; 49: 010211
[3] Krenke T, Duman E, Acet M, Moya X, Mannosa L, Planes A.  J Appl Phys, 2007; 102: 033903
[4] Liu H S, Zhang C L, Han Z D, Xuan H C, Wang D H, Du Y W.  J Alloys Compd, 2009; 467: 27
[5] Srivastava V, Chen X, James R D.  Appl Phys Lett, 2010; 97: 014101
[6] Santamarta R, Cesari E, Pons J, Goryczka T.  Metall Mater Trans, 2004; 35A: 761
[7] Shelyakov A V, Sitnikov N N, Koledov V V, Kuchin D S, Irzhak A I,Tabachkova N Y.  Int J Smart Nano Mater, 2011; 2: 68
[8] Tong Y X, Chen F, Wang B L, Li L, Zheng Y F.  Rare Met Mater Eng, 2010; 39: 2262
(佟运祥, 陈枫, 王本力, 李莉, 郑玉峰. 稀有金属材料与工程, 2010; 39: 2262)
[9] Chernenko V A, Kokorin V V, Vitenko I N.  Smart Mater Struct, 1994; 3: 80
[10] Feng Y, Sui J H, Chen L, Cai W.  Mater Lett, 2009; 63: 965
[11] Miyazaki S, Ishida A.  Mater Sci Eng, 1999; A273-275: 106
[12] Ghodssi R, Lin P.  MEMS Materials and Processes Handbook. New York: Springer, 2011: 361
[13] Zou M, Liu M Z, Dai S H, Xu M, Zhang F J, Gao Z M, Xie M M.  Acta Metall Sin, 2001; 37: 691
 (邹岷, 刘民治, 戴受惠, 徐民, 张凤军, 高忠民, 谢蒙萌. 金属学报, 2001; 37: 691)
[14] Chen F, Tong Y X, Huang Y J, Tian B, Li L, Zheng Y F.  Intermetallics, 2013; 36: 81
[15] Otsuka K, Ren X.  Progress Mater Sci, 2005; 50: 511
[16] He Z R, Zhou J E, Shuichi M.  Acta Metall Sin, 2003; 39: 617
(贺志荣, 周敬恩, 宫崎修一. 金属学报, 2003; 39: 617)
[17] Rama Rao N V, Gopalan R, Manivel Raja M, Arout Chelvane J, Majumdar B, Chandrasekaran V. Scr Mater, 2007; 56: 405
[18] Santos J D, Sanchez T, Alvarez P, Sanchez M L, Sanchez Llamazares J L,Hernando B, Escoda L I, Sunol J J, Varga R.  J Appl Phys, 2008; 103: 07B326
[19] Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F.  Scr Mater, 2008; 58: 830
[20] Pons J, Chernenko V A, Santamarta R, Cesari E.  Acta Mater, 2000; 48: 3027
[21] Jiang C B, Muhammad Y, Deng L F, Wu W, Xu H B.  Acta Mater, 2004; 52: 2779
[22] Segui C, Chernenko V A, Pons J, Cesari E, Khovailo V, Takagi T.  Acta Mater, 2005; 53: 111
[23] Sozinov A, Likhachev A A, Lanska N, Ullakko K.  Appl Phys Lett, 2002; 80: 1746
[24] Heczko O, Svec P, Janickovic D, Ullakko K. IEEE Trans Magn, 2002; 38: 2841
[25] Wu S K, Yang S T.  Mater Lett, 2003; 57: 4291
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[7] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[9] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[10] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[11] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[12] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[13] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[14] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[15] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.