|
|
|
| Al液滴等温结晶的形核特征分析 |
王书成, 彭平( ) |
| 湖南大学 材料科学与工程学院 长沙 410082 |
|
| On the Homogeneous Nucleation Characteristics of Al Droplets During Isothermal Crystallization |
WANG Shucheng, PENG Ping( ) |
| School of Materials Science and Engineering, Hunan University, Changsha 410082, China |
引用本文:
王书成, 彭平. Al液滴等温结晶的形核特征分析[J]. 金属学报, 2025, 61(12): 1925-1932.
Shucheng WANG,
Ping PENG.
On the Homogeneous Nucleation Characteristics of Al Droplets During Isothermal Crystallization[J]. Acta Metall Sin, 2025, 61(12): 1925-1932.
| [1] |
Wang J C, Guo C, Zhang Q, et al. Recent progresses in modeling of nucleation during solidification on the atomic scale [J]. Acta Metall. Sin., 2018, 54: 204
|
| [1] |
王锦程, 郭 灿, 张 琪 等. 原子尺度下凝固形核计算模拟研究的进展 [J]. 金属学报, 2018, 54: 204
|
| [2] |
Murphy A G, Mathiesen R H, Houltz Y, et al. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket [J]. J. Cryst. Growth, 2016, 454: 96
|
| [3] |
Abou-Khalil L, Salloum-Abou-Jaoude G, Reinhart G, et al. Influence of gravity level on columnar-to-equiaxed transition during directional solidification of Al-20 wt.% Cu alloys [J]. Acta Mater., 2016, 110: 44
|
| [4] |
Ruan Y, Wang Q Q, Chang S Y, et al. Structural evolution and micromechanical properties of ternary Al-Ag-Ge alloy solidified under microgravity condition [J]. Acta Mater., 2017, 141: 456
|
| [5] |
Luo S B, Wang W L, Xia Z C, et al. Theoretical prediction and experimental observation for microstructural evolution of undercooled nickel-titanium eutectic type alloys [J]. J. Alloys Compd., 2017, 692: 265
|
| [6] |
Geng D L, Xie W J, Yan N, et al. Surface waves on floating liquids induced by ultrasound field [J]. Appl. Phys. Lett., 2013, 102: 041604
|
| [7] |
Mahata A, Zaeem M A, Baskes M I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025007
|
| [8] |
Brandel C, ter Horst J H. Measuring induction times and crystal nucleation rates [J]. Faraday Discuss., 2015, 179: 199
|
| [9] |
Yi P, Rutledge G C. Molecular origins of homogeneous crystal nucleation [J]. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 157
|
| [10] |
Herlach D M, Palberg T, Klassen I, et al. Overview: Experimental studies of crystal nucleation: Metals and colloids [J]. J. Chem. Phys., 2016, 145: 211703
|
| [11] |
Li R, Wu Y Q, Xiao J J. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe [J]. J. Chem. Phys., 2014, 140: 034503
|
| [12] |
Li Y, Peng P. Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag [J]. Acta Phy. Sin., 2019, 68: 076401
|
| [12] |
李 媛, 彭 平. 非晶Ag晶化过程中不同类型晶核结构的识别与跟踪 [J]. 物理学报, 2019, 68: 076401
|
| [13] |
Li Y, Peng P, Xu D S, et al. Identification of critical nuclei in the rapid solidification via configuration heredity [J]. J. Phys.: Condens. Matter, 2021, 33: 175701
|
| [14] |
Liu Z B, Li Y, Peng P, et al. An exact measurement of nucleation incubation times in isothermal crystallizations of liquid metal Al via configuration heredity [J]. J. Cryst. Growth, 2023, 601: 126927
|
| [15] |
Page A J, Sear R P. Heterogeneous nucleation in and out of pores [J]. Phys. Rev. Lett., 2006, 97: 065701
|
| [16] |
Filipponi A, Giammatteo P. Kinetic Monte Carlo simulation of the classical nucleation process [J]. J. Chem. Phys., 2016, 145: 211913
|
| [17] |
Guo Y L, Wang J C, Wang Z J, et al. Phase field crystal model for the effect of colored noise on homogenerous nucleation [J]. Acta Phys. Sin., 2012, 61: 146401
|
| [17] |
郭耀麟, 王锦程, 王志军 等. 噪声对均质形核过程影响的晶体相场法研究 [J]. 物理学报, 2012, 61: 146401
|
| [18] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
| [19] |
Mendelev M I, Kramer M J, Becker C A, et al. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu [J]. Philos. Mag., 2008, 88: 1723
|
| [20] |
Liu R S, Dong K J, Li J Y, et al. Formation and description of nano-clusters formed during rapid solidification processes in liquid metals [J]. J. Non-Cryst. Solids, 2005, 351: 612
|
| [21] |
Wei Y D, Peng P, Yan Z Z, et al. A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method [J]. Comput. Mater. Sci., 2016, 123: 214
|
| [22] |
Wen D D, Peng P, Jiang Y Q, et al. A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy [J]. Acta Phys. Sin., 2013, 62: 196101
|
| [22] |
文大东, 彭 平, 蒋元祺 等. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪 [J]. 物理学报, 2013, 62: 196101
|
| [23] |
Hou Z Y, Liu R S, Liu H R, et al. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium [J]. J. Chem. Phys., 2007, 127: 174503
|
| [24] |
E J C, Wang L, Cai Y, et al. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth [J]. J. Chem. Phys., 2015, 142: 6
|
| [25] |
Song H, Sun Y, Zhang F, et al. Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor [J]. Phys. Rev. Mater., 2018, 2: 023401
|
| [26] |
Wedekind J, Reguera D. Kinetic reconstruction of the free-energy landscape [J]. J. Phys. Chem., 2008, 112B: 11060
|
| [27] |
Kalikmanov V I. Nucleation Theory [M]. Dordrecht: Springer, 2013: 17
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|