Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1925-1932    DOI: 10.11900/0412.1961.2024.00206
  研究论文 本期目录 | 过刊浏览 |
Al液滴等温结晶的形核特征分析
王书成, 彭平()
湖南大学 材料科学与工程学院 长沙 410082
On the Homogeneous Nucleation Characteristics of Al Droplets During Isothermal Crystallization
WANG Shucheng, PENG Ping()
School of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

王书成, 彭平. Al液滴等温结晶的形核特征分析[J]. 金属学报, 2025, 61(12): 1925-1932.
Shucheng WANG, Ping PENG. On the Homogeneous Nucleation Characteristics of Al Droplets During Isothermal Crystallization[J]. Acta Metall Sin, 2025, 61(12): 1925-1932.

全文: PDF(1915 KB)   HTML
摘要: 

鉴于均匀形核在快速凝固晶粒细化中的重要作用,本工作选取液态金属Al为研究对象,采用团簇类型指数法,通过对团簇结构遗传性的逆向追踪,研究了Al液滴在等温结晶过程中的形核特征。结果表明,在过冷度ΔT ≈ 0.41Tm (Tm为熔点)下,形核首先出现在液滴表层,并且其稳态形核率(I0)与临界晶核平均尺寸(n¯c)均比芯部大。可视化分析显示,临界晶核几何构型为非球形,液/固界面为fcc-液态/hcp多相结构。与Al液体相比,Al液滴的平均形核孕育时间(τ¯c)较长,而液滴表层的τ¯c又比液滴芯部长,但液滴和液体都呈现出晶胚平均有效生长时间(τ¯geff)远大于晶胚平均孕育时间(τ¯e)的特点。比较液滴的不同形核模式发现,直接从液态原子转化成fcc临界晶核数量(qc)很少,大多经历晶胚孕育和有效生长。由此形成的n¯c最大,且晶胚孕育时间(τe)对n¯c影响很小,但n¯c越大,晶胚所需有效生长时间(τgeff)越长。

关键词 形核液滴分子动力学模拟    
Abstract

Owing to the important role of homogeneous nucleation in grain refinement of rapidly solidified alloys, a detailed molecular dynamics simulation is performed to investigate the incubation of embryos and their evolution into nuclei during the isothermal crystallization of liquid Al droplets. Using the cluster type index method (CTIM) based on Honeycutt-Andersen (H-A) bond-type indices, various fcc critical nuclei formed during isothermal crystallization are distinguished from numerous fcc embryos through reverse tracking of atomic trajectories, relying on the structural heredity of fcc single-crystal clusters. The results show that nuclei first appear in the shell region of Al droplets with a critical size (nc) ranging from 2 to 100 atoms at an undercooling of ΔT ≈ 0.41Tm (Tm is melting point). Both the steady-state nucleation rate (I0) and the average critical nucleus size (n¯c) in the shell are higher than those in the core region. Visual analysis of the geometry of critical nuclei reveals that most are non-spherical, and the liquid-solid interface is not a simple fcc-liquid dual-phase configuration, but rather a multi-phase structure involving fcc-liquid and hcp components. Compared with the nucleation in Al bulk, a longer average nucleation incubation time (τ¯c) of critical nuclei is observed in Al droplets, with τ¯c in the shell region being longer than that in the core. When τ¯c is divided into the average incubation time of embryos (τ¯e) and their average effective growth time (τ¯geff), it is determined that τ¯geff is considerably longer than τ¯e in both Al droplets and Al bulk. For the four modes of nucleation, i.e., (I) embryo incubation and subsequent effective growth, (II) only effective growth of embryos, (III) direct nucleation after embryo incubation, and (IV) direct transformation from liquid atoms, a tracking analysis of atomic trajectories reveals that few critical nuclei are formed directly from liquid atoms. In contrast, most critical nuclei undergo both embryo incubation and effective growth, and these exhibit the largest n¯c. Moreover, the incubation time (τe) of embryos has little effect on n¯c of critical nuclei, whereas a large n¯c typically requires a long effective growth time (τgeff) of embryos during isothermal crystallization.

Key wordsnucleation    droplet    molecular dynamics simulation
收稿日期: 2024-06-14     
ZTFLH:  TG111.4  
基金资助:国家自然科学基金项目(51871096);国家自然科学基金项目(52071136)
通讯作者: 彭平,ppeng@hnu.edu.cn,主要从事金属材料的结构优化与性能预测研究
Corresponding author: PENG Ping, professor, Tel: 13873119465, E-mail: ppeng@hnu.edu.cn
作者简介: 王书成,男,1998年生,硕士
图1  fcc单晶团簇连续遗传和瞬态遗传示意图
图2  Al液滴和Al液体在等温结晶过程中系统中每个原子的平均能量(E(t))及其对等温结晶时间(t)的一阶导数(∂E / ∂t)随t的变化
图3  等温结晶过程中Al液滴和Al液体的双体分布函数(g(r))和晶体原子占比
图4  在等温结晶过程中Al液滴和Al液体中fcc单晶团簇数目(qSCC)和平均尺寸(n¯SCC)随t的变化及Al液滴在特征时间点的原子空间分布
图5  沿Al液滴半径方向的临界晶核数目(qc)分布
图6  Al液滴芯部和表层及Al液体中临界晶核总数(qca)随t的变化及不同临界尺寸(nc)和不同t下的qca分布
图7  不同形状临界晶核的内部结构和界面形态示意图
Regionτ¯eτ¯geffτ¯c
Droplet core1.895.197.08
Droplet shell2.315.067.37
Bulk1.834.736.20
表1  Al液滴芯部、表层和Al液体晶胚的平均孕育时间(τ¯e)、平均有效生长时间(τ¯geff)和平均形核孕育时间(τ¯c) (ps)
图8  Al液滴芯部和表层及Al液体晶胚孕育时间(τe)和晶胚有效生长时间(τgeff)与临界晶核平均尺寸(n¯c)的关系
图9  Al液滴芯部和表层及Al液体中由不同模式形成的临界晶核的尺寸和数量
[1] Wang J C, Guo C, Zhang Q, et al. Recent progresses in modeling of nucleation during solidification on the atomic scale [J]. Acta Metall. Sin., 2018, 54: 204
[1] 王锦程, 郭 灿, 张 琪 等. 原子尺度下凝固形核计算模拟研究的进展 [J]. 金属学报, 2018, 54: 204
[2] Murphy A G, Mathiesen R H, Houltz Y, et al. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket [J]. J. Cryst. Growth, 2016, 454: 96
[3] Abou-Khalil L, Salloum-Abou-Jaoude G, Reinhart G, et al. Influence of gravity level on columnar-to-equiaxed transition during directional solidification of Al-20 wt.% Cu alloys [J]. Acta Mater., 2016, 110: 44
[4] Ruan Y, Wang Q Q, Chang S Y, et al. Structural evolution and micromechanical properties of ternary Al-Ag-Ge alloy solidified under microgravity condition [J]. Acta Mater., 2017, 141: 456
[5] Luo S B, Wang W L, Xia Z C, et al. Theoretical prediction and experimental observation for microstructural evolution of undercooled nickel-titanium eutectic type alloys [J]. J. Alloys Compd., 2017, 692: 265
[6] Geng D L, Xie W J, Yan N, et al. Surface waves on floating liquids induced by ultrasound field [J]. Appl. Phys. Lett., 2013, 102: 041604
[7] Mahata A, Zaeem M A, Baskes M I. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025007
[8] Brandel C, ter Horst J H. Measuring induction times and crystal nucleation rates [J]. Faraday Discuss., 2015, 179: 199
[9] Yi P, Rutledge G C. Molecular origins of homogeneous crystal nucleation [J]. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 157
[10] Herlach D M, Palberg T, Klassen I, et al. Overview: Experimental studies of crystal nucleation: Metals and colloids [J]. J. Chem. Phys., 2016, 145: 211703
[11] Li R, Wu Y Q, Xiao J J. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe [J]. J. Chem. Phys., 2014, 140: 034503
[12] Li Y, Peng P. Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag [J]. Acta Phy. Sin., 2019, 68: 076401
[12] 李 媛, 彭 平. 非晶Ag晶化过程中不同类型晶核结构的识别与跟踪 [J]. 物理学报, 2019, 68: 076401
[13] Li Y, Peng P, Xu D S, et al. Identification of critical nuclei in the rapid solidification via configuration heredity [J]. J. Phys.: Condens. Matter, 2021, 33: 175701
[14] Liu Z B, Li Y, Peng P, et al. An exact measurement of nucleation incubation times in isothermal crystallizations of liquid metal Al via configuration heredity [J]. J. Cryst. Growth, 2023, 601: 126927
[15] Page A J, Sear R P. Heterogeneous nucleation in and out of pores [J]. Phys. Rev. Lett., 2006, 97: 065701
[16] Filipponi A, Giammatteo P. Kinetic Monte Carlo simulation of the classical nucleation process [J]. J. Chem. Phys., 2016, 145: 211913
[17] Guo Y L, Wang J C, Wang Z J, et al. Phase field crystal model for the effect of colored noise on homogenerous nucleation [J]. Acta Phys. Sin., 2012, 61: 146401
[17] 郭耀麟, 王锦程, 王志军 等. 噪声对均质形核过程影响的晶体相场法研究 [J]. 物理学报, 2012, 61: 146401
[18] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
[19] Mendelev M I, Kramer M J, Becker C A, et al. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu [J]. Philos. Mag., 2008, 88: 1723
[20] Liu R S, Dong K J, Li J Y, et al. Formation and description of nano-clusters formed during rapid solidification processes in liquid metals [J]. J. Non-Cryst. Solids, 2005, 351: 612
[21] Wei Y D, Peng P, Yan Z Z, et al. A comparative study on local atomic configurations characterized by cluster-type-index method and Voronoi polyhedron method [J]. Comput. Mater. Sci., 2016, 123: 214
[22] Wen D D, Peng P, Jiang Y Q, et al. A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy [J]. Acta Phys. Sin., 2013, 62: 196101
[22] 文大东, 彭 平, 蒋元祺 等. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪 [J]. 物理学报, 2013, 62: 196101
[23] Hou Z Y, Liu R S, Liu H R, et al. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium [J]. J. Chem. Phys., 2007, 127: 174503
[24] E J C, Wang L, Cai Y, et al. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth [J]. J. Chem. Phys., 2015, 142: 6
[25] Song H, Sun Y, Zhang F, et al. Nucleation of stoichiometric compounds from liquid: Role of the kinetic factor [J]. Phys. Rev. Mater., 2018, 2: 023401
[26] Wedekind J, Reguera D. Kinetic reconstruction of the free-energy landscape [J]. J. Phys. Chem., 2008, 112B: 11060
[27] Kalikmanov V I. Nucleation Theory [M]. Dordrecht: Springer, 2013: 17
[1] 张文彬, 李小龙, 郝硕, 刘胜杰, 蔡星周, 陈雷, 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展[J]. 金属学报, 2025, 61(4): 608-618.
[2] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[3] 李彦强, 赵九洲, 江鸿翔, 张丽丽, 何杰. 脉冲电流作用下Pb-Al合金的液-固分相过程[J]. 金属学报, 2024, 60(12): 1710-1720.
[4] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[5] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[6] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[9] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[13] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[15] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.