|
|
含Zr镁合金晶粒细化机理与研究进展 |
刘勇( ), 曾刚, 刘洪, 王煜, 李建龙 |
南昌大学 先进制造学院 江西省轻质高强结构材料重点实验室 南昌 330031 |
|
Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr |
LIU Yong( ), ZENG Gang, LIU Hong, WANG Yu, LI Jianlong |
Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China |
引用本文:
刘勇, 曾刚, 刘洪, 王煜, 李建龙. 含Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
Yong LIU,
Gang ZENG,
Hong LIU,
Yu WANG,
Jianlong LI.
Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr[J]. Acta Metall Sin, 2024, 60(2): 129-142.
1 |
Li G, Qu W Y, Luo M, et al. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3255
doi: 10.1016/S1003-6326(21)65729-1
|
2 |
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
|
3 |
Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716
pmid: 29371467
|
4 |
Zhang Y, Rong W, Wu Y J, et al. A comparative study of the role of Ag in microstructures and mechanical properties of Mg-Gd and Mg-Y alloys [J]. Mater. Sci. Eng., 2018, A731: 609
|
5 |
Wang L S, Jiang J H, Saleh B, et al. Controlling corrosion resistance of a biodegradable Mg-Y-Zn alloy with LPSO phases via multi-pass ECAP process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1180
doi: 10.1007/s40195-020-01042-y
|
6 |
Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
|
6 |
曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
|
7 |
Xiong J P, Liu Y. Research progress in interfacial regulation of magnesium matrix composites [J]. J. Mater. Eng., 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
|
7 |
熊京鹏, 刘 勇. 镁基复合材料界面调控研究进展 [J]. 材料工程, 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
|
8 |
Zhou M H, Xu Y H, Liu Y, et al. Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4 Zr alloys treated by ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2021, A828: 141881
|
9 |
Cheng Y F, Du W B, Liu K, et al. Mechanical properties and corrosion behaviors of Mg-4Zn-0.2Mn-0.2Ca alloy after long term in vitro degradation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 363
doi: 10.1016/S1003-6326(20)65218-9
|
10 |
Yan C J, Guan B, Xin Y C, et al. Mechanical and corrosion behavior of a biomedical Mg-6Zn-0.5Zr alloy containing a large number of twins [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 439
doi: 10.1007/s40195-022-01480-w
|
11 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
11 |
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
12 |
Liang J W, Lei Z L, Chen Y B, et al. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2022, A839: 142858
|
13 |
Wang T, Yang L, Tang Z F, et al. Microstructure, mechanical properties and deformation mechanism of powder metallurgy AZ31 magnesium alloy during rolling [J]. Mater. Sci. Eng., 2022, A844: 143042
|
14 |
Zhou B J, Li Y J, Wang L Y, et al. The role of grain boundary plane in slip transfer during deformation of magnesium alloys [J]. Acta Mater., 2022, 227: 117662
doi: 10.1016/j.actamat.2022.117662
|
15 |
Tian J, Deng J F, Chang Y Y, et al. A study of unstable fracture of a magnesium alloy caused by uneven microstructure [J]. Mater. Lett., 2022, 314: 131799
doi: 10.1016/j.matlet.2022.131799
|
16 |
Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
|
17 |
Easton M, Stjohn D. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles [J]. Metall. Mater. Trans., 2005, 36A: 1911
|
18 |
StJohn D H, Cao P, Qian M, et al. A new analytical approach to reveal the mechanisms of grain refinement [J]. Adv. Eng. Mater., 2007, 9: 739
doi: 10.1002/adem.v9:9
|
19 |
Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3A1-1Zn [J]. Scr. Mater., 2004, 51: 19
doi: 10.1016/j.scriptamat.2004.03.023
|
20 |
Patel V, Li W Y, Andersson J, et al. Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing [J]. J. Mater. Res. Technol., 2022, 17: 3150
doi: 10.1016/j.jmrt.2022.02.059
|
21 |
Golrang M, Mobasheri M, Mirzadeh H, et al. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy [J]. J. Alloys Compd., 2020, 815: 152380
doi: 10.1016/j.jallcom.2019.152380
|
22 |
Liu X, Yin S Q, Zhang Z Q, et al. Effect of limestone ores on grain refinement of as-cast commercial AZ31 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1103
doi: 10.1016/S1003-6326(18)64746-6
|
23 |
Zhu S Q, Ringer S P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys [J]. Acta Mater., 2018, 144: 365
doi: 10.1016/j.actamat.2017.11.004
|
24 |
Robson J D, Paa-Rai C. The interaction of grain refinement and ageing in magnesium-zinc-zirconium (ZK) alloys [J]. Acta Mater., 2015, 95: 10
doi: 10.1016/j.actamat.2015.05.012
|
25 |
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
25 |
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
|
26 |
Li L H, Liu W H, Qi F G, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review [J]. J. Magnes. Alloy., 2022, 10: 2334
|
27 |
Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloy., 2022, 10: 1191
|
28 |
Wang Z Y, Chen X H, Shu Y K, et al. Microstructure, texture, and mechanical properties of Mg-Zn-Y-Nd-Zr alloys [J]. Rare Met. Mater. Eng., 2022, 51: 3138
|
28 |
王子怡, 陈先华, 舒彦凯 等. Mg-Zn-Y-Nd-Zr合金的显微组织、织构、力学性能(英文) [J]. 稀有金属材料与工程, 2022, 51: 3138
|
29 |
Shi Q Y, Natarajan A R, Van der Ven A, et al. Partitioning of Ca to metastable precipitates in a Mg-rare earth alloy [J]. Mater. Res. Lett., 2023, 11: 222
doi: 10.1080/21663831.2022.2138724
|
30 |
Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
|
31 |
Johnsson M, Bäckerud L. The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys [J]. Int. J. Mater. Res., 1996, 87: 216
doi: 10.1515/ijmr-1996-870312
|
32 |
Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
doi: 10.1016/j.matdes.2015.08.026
|
33 |
Li J L, Chen R S, Ma Y Q, et al. Hot tearing of sand cast Mg-5wt.% Y-4wt.% RE (WE54) alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 728
doi: 10.1007/s40195-013-0230-9
|
34 |
Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
|
35 |
Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
doi: 10.1016/j.matlet.2018.07.037
|
36 |
Rathi S K, Sharma A, Di Sabatino M. Effect of mould temperature, grain refinement and modification on hot tearing test in Al-7Si-3Cu alloy [J]. Eng. Fail. Anal., 2017, 79: 592
doi: 10.1016/j.engfailanal.2017.04.037
|
37 |
Easton M, Grandfield J F, StJohn D H, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
doi: 10.4028/www.scientific.net/MSF.519-521
|
38 |
Uludağ M, Çetin R, Dispinar D, et al. The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy [J]. Eng. Fail. Anal., 2018, 90: 90
doi: 10.1016/j.engfailanal.2018.03.025
|
39 |
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
|
40 |
Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
doi: 10.1016/S1003-6326(14)63142-3
|
41 |
Davis T A, Bichler L, D'Elia F, et al. Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy [J]. J. Alloys Compd., 2018, 759: 70
doi: 10.1016/j.jallcom.2018.05.129
|
42 |
Xing F J, Guo F, Su J, et al. The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism [J]. Mater. Res. Express, 2021, 8: 066516
|
43 |
Wu G H, Sun M, Dai J C, et al. Study on the grain refinement behavior of Mg-Zr master alloy and Zr containing compounds in Mg-10Gd-3Y magnesium alloy [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 181
|
44 |
StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
|
45 |
StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
|
46 |
Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
doi: 10.1016/j.jallcom.2014.09.061
|
47 |
Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
doi: 10.1016/j.scriptamat.2005.11.002
|
48 |
Sun M, StJohn D H, Easton M A, et al. Effect of cooling rate on the grain refinement of Mg-Y-Zr alloys [J]. Metall. Mater. Trans., 2020, 51A: 482
|
49 |
Balasubramani N, Wang G, Easton M A, et al. A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys [J]. J. Magnes. Alloy., 2021, 9: 829
|
50 |
Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
|
51 |
Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Mater. Trans., 1993, 24A: 481
|
52 |
Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
doi: 10.1016/S1359-6454(00)00094-X
|
53 |
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
|
54 |
Zhang M X, Kelly P M, Qian M, et al. Crystallography of grain refinement in Mg-Al based alloys [J]. Acta Mater., 2005, 53: 3261
doi: 10.1016/j.actamat.2005.03.030
|
55 |
Qiu D, Zhang M X, Fu H M, et al. Crystallography of recently developed grain refiners for Mg-Al alloys [J]. Philos. Mag. Lett., 2007, 87: 505
doi: 10.1080/09500830701253151
|
56 |
Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
doi: 10.1016/j.actamat.2009.03.011
|
57 |
Fu H M, Zhang M X, Qiu D, et al. Grain refinement by AlN particles in Mg-Al based alloys [J]. J. Alloys Compd., 2009, 478: 809
doi: 10.1016/j.jallcom.2008.12.029
|
58 |
Lee Y C, Dahle A K, StJohn D H. The role of solute in grain refinement of magnesium [J]. Metall. Mater. Trans., 2000, 31A: 2895
|
59 |
Easton M, StJohn D. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature [J]. Metall. Mater. Trans., 1999, 30A: 1613
|
60 |
Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt [J]. Acta Mater., 2011, 59: 2704
doi: 10.1016/j.actamat.2011.01.008
|
61 |
Schmid-Fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification [J]. Acta Mater., 2011, 59: 6133
doi: 10.1016/j.actamat.2011.06.026
|
62 |
Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
|
63 |
Günther R, Hartig C, Bormann R. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment [J]. Acta Mater., 2006, 54: 5591
doi: 10.1016/j.actamat.2006.07.035
|
64 |
Li Y J, Tang A T. Recent development of grain refining technologies for magnesium alloys [J]. Mater. Rev., 2013, 27(17): 125
|
64 |
李玉娟, 汤爱涛. 镁合金晶粒细化的研究进展 [J]. 材料导报, 2013, 27(17): 125
|
65 |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
doi: 10.1007/BF02642799
|
66 |
Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
doi: 10.1021/ie50510a031
|
67 |
Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
doi: 10.1016/S0167-577X(02)00417-2
|
68 |
Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
doi: 10.1016/j.scriptamat.2005.05.008
|
69 |
Saunders W P, Strieter F P. Alloying zirconium to magnesium [J]. Trans. Am. Foundrymen's Soc., 1952, 60: 581
|
70 |
Qian M, StJohn D H, Frost M T. Characteristic zirconium-rich coring structures in Mg-Zr alloys [J]. Scr. Mater., 2002, 46: 649
doi: 10.1016/S1359-6462(02)00046-5
|
71 |
Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
|
71 |
孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
|
72 |
Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
doi: 10.4028/www.scientific.net/MSF.419-422
|
73 |
Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
|
74 |
Sun M, Easton M A, StJohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
doi: 10.1002/adem.v15.5
|
75 |
Qian M, StJohn D H, Frost M T. Heterogeneous nuclei size in magnesium-zirconium alloys [J]. Scr. Mater., 2004, 50: 1115
doi: 10.1016/j.scriptamat.2004.01.026
|
76 |
Liu T, Wang X G, Li W L, et al. Genetic effects of Mg-Zr master alloy in extruded thick sheets of ZK60 magnesium alloy [J]. Mater. Lett., 2023, 339: 134084
doi: 10.1016/j.matlet.2023.134084
|
77 |
Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
|
78 |
Tian Q. Grain refining mechanism and influencing factors of Mg-Re-Zr alloys [D]. Harbin:Harbin Institute of Technology, 2011
|
78 |
田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
|
79 |
Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
doi: 10.1016/j.actamat.2006.09.016
|
80 |
Tong X, Wu G H, Easton M A, et al. Exceptional grain refinement of Mg-Zr master alloy treated by tungsten inert gas arc re-melting with ultra-high frequency pulses [J]. Scr. Mater., 2022, 215: 114700
doi: 10.1016/j.scriptamat.2022.114700
|
81 |
Saha P, Viswanathan S. An analysis of the grain refinement of magnesium by zirconium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 175
|
82 |
Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
82 |
庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
|
83 |
Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
doi: 10.1016/S1471-5317(01)00009-8
|
84 |
Qian M, StJohn D, Frost M, et al. Grain refinement of pure magnesium using rolled Zirmax® master alloy (MG-33.3 ZR) [A]. Magnesium Technology 2003 [C]. Warrendale: TMS, 2003: 215
|
85 |
Vargas M, Lathabai S, Uggowitzer P J, et al. Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50 [J]. Mater. Sci. Eng., 2017, A685: 253
|
86 |
Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
|
87 |
Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
|
88 |
Das S, Barekar N, El Fakir O, et al. Influence of intensive melt shearing on subsequent hot rolling and the mechanical properties of twin roll cast AZ31 strips [J]. Mater. Lett., 2015, 144: 54
doi: 10.1016/j.matlet.2015.01.017
|
89 |
Aarabi H, Alizadeh M. Improvement of microstructure and corrosion properties of AA7075 Al alloy by melt shearing process [J]. Mater. Lett., 2020, 275: 128085
doi: 10.1016/j.matlet.2020.128085
|
90 |
Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
doi: 10.1080/13640461.2017.1317393
|
91 |
Balasubramani N, StJohn D, Dargusch M, et al. Ultrasonic processing for structure refinement: An overview of mechanisms and application of the interdependence theory [J]. Materials, 2019, 12: 3187
doi: 10.3390/ma12193187
|
92 |
Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
|
93 |
Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo-and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
doi: 10.1016/j.jcrysgro.2019.02.004
|
94 |
Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
|
95 |
Wang B, Yang Y S. Microstructure refinement of Mg-Gd-Y-Zr alloy under pulsed magnetic field [J]. J. Iron Steel Res. Int., 2012, 19(suppl.1) : 446
|
96 |
Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
|
96 |
汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
|
97 |
Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
|
97 |
吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
|
98 |
Jiang Y B, Tang G Y, Shek C, et al. Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment [J]. J. Alloys Compd., 2011, 509: 4308
doi: 10.1016/j.jallcom.2011.01.052
|
99 |
Wang G, Croaker P, Dargusch M, et al. Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy [J]. Comput. Mater. Sci., 2017, 134: 116
doi: 10.1016/j.commatsci.2017.03.041
|
100 |
Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
|
101 |
Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
|
101 |
胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
doi: 10.15980/j.tzzz.2018.07.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|