Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1933-1944    DOI: 10.11900/0412.1961.2024.00174
  研究论文 本期目录 | 过刊浏览 |
微重力条件下Gd-Co-Ti合金原位粒子复合凝固组织的形成
孙昊1,2, 江鸿翔1,2(), 赵九洲1,2(), 张丽丽1,2, 何杰1,2
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Formation of In Situ Particle Composite Solidification Microstructure of Gd-Co-Ti Alloy Under Microgravity Conditions
SUN Hao1,2, JIANG Hongxiang1,2(), ZHAO Jiuzhou1,2(), ZHANG Lili1,2, HE Jie1,2
1 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙昊, 江鸿翔, 赵九洲, 张丽丽, 何杰. 微重力条件下Gd-Co-Ti合金原位粒子复合凝固组织的形成[J]. 金属学报, 2025, 61(12): 1933-1944.
Hao SUN, Hongxiang JIANG, Jiuzhou ZHAO, Lili ZHANG, Jie HE. Formation of In Situ Particle Composite Solidification Microstructure of Gd-Co-Ti Alloy Under Microgravity Conditions[J]. Acta Metall Sin, 2025, 61(12): 1933-1944.

全文: PDF(3200 KB)   HTML
摘要: 

Gd及其合金是良好的磁性材料,向Gd-Ti合金中加入过渡族元素Co可形成热稳定磁性化合物,Gd-Co-Ti合金在磁性原位复合材料研发方面具有较好的前景。但Gd-Co-Ti是偏晶合金,常规凝固条件下易形成偏析组织,其凝固特性研究极为困难。本工作在落管微重力条件下对Gd-Co-Ti合金开展了凝固实验,获得了富TiCo相以近球形颗粒形式均匀分布于Gd基体中的球形合金样品。建立了Gd-Co-Ti合金的凝固理论模型,模拟分析了落管微重力条件下Gd-Co-Ti合金凝固组织演变过程,研究了样品尺寸(冷却速率)对凝固组织的影响。结果表明,富TiCo相液滴仅在液-液相区间内形核,在液-液-固三相区间内未发生富TiCo相液滴的形核现象;除表面区域外,富TiCo相液滴的Ostwald熟化作用较弱;合金样品尺寸越大,冷却速率越小,凝固组织中富TiCo相粒子的数密度越低,平均尺寸越大,富TiCo相液滴的最大形核率(IDMax)和凝固后富TiCo相粒子的数密度(ND)与形核阶段熔体冷却速率(T˙nuc)分别满足指数关系IDMax = 7.202 × 10-5T˙nuc2.2ND = 3.385 × 10-4T˙nuc1.3

关键词 Gd-Co-Ti合金微重力液-液相分离凝固建模与模拟    
Abstract

Gd and its alloys are good magnetic materials, and the addition of the transition metal Co to Gd-Ti alloy can facilitate the formation of thermally stable magnetic compounds. The Gd-Co-Ti alloy exhibits significant potential for the development of magnetic in situ composite materials. However, because of the large positive mixing enthalpy between Gd and Ti, the Gd-Co-Ti alloy is a typical monotectic alloy, exhibiting a miscibility gap in the liquid state. Under the ground gravity conditions, the alloy tends to form a phase-segregated solidification microstructure resulting from liquid-liquid phase transformation. Strong convection in the melt during solidification aggravates this process, rendering it difficult for various influencing factors to interact. However, research on solidification theory for these alloys is limited. Microgravity environments can effectively weaken or even eliminate natural convection in alloy melts, which is beneficial for studying the solidification process and microstructure formation in monotectic alloys. Previous studies have focused on the phase structures, material properties, and thermodynamic behavior of Gd-Co-Ti ternary monotectic alloys. However, research on their solidification process is sparse. In this study, rapid and sub-rapid solidification experiments under drop-tube microgravity conditions were performed using Gd-Co-Ti ternary monotectic alloys. The effects of cooling rates on the solidification microstructure of the alloy were investigated. The resulting samples exhibited a composite microstructure comprising homogeneously dispersed subspherical TiCo-rich particles in the Gd matrix. These particles include: (i) TiCo-rich phase particles formed via liquid-liquid phase transformation, and (ii) TiCo-rich nanoparticles formed through desolventizing precipitation during the cooling process after solidification. To elucidate the microstructure evolution in Gd-Co-Ti alloys solidified under drop-tube conditions, a population dynamics model was established. The model comprehensively considers the thermal and mass transfer characteristics during solidification, as well as the nucleation, growth, and spatial motions of TiCo-rich phase droplets. The algorithm for solving the controlling equations in this model was developed based on the finite volume method. The microstructure formation was simulated, and the results were consistent with the experimental data, thus validating the accuracy of the model. The numerical results demonstrated that the nucleation of the TiCo-rich phase droplets occurred during the liquid-liquid phase transformation under drop-tube microgravity conditions. The number density of these TiCo-rich phase droplets remained unchanged after nucleation, indicating that the Ostwald coarsening of the TiCo-rich droplets was weak during the cooling of the alloy melt. Thus, nucleation and diffusion growth were the primary factors influencing the size of TiCo-rich phase droplets formed during the liquid-liquid phase transformation. With the increase in the sample sizes, the cooling rate of the alloy melt and the number density of the TiCo-rich particles decreased; thus, the average radius of the TiCo-rich particles in the solidification microstructure increased. Furthermore, the maximum nucleation rate (IDMax) and the number density (ND) of the TiCo-rich phase droplets/particles exhibited an exponential dependence on the cooling rate (T˙nuc) during the nucleation period as per the following expression: IDMax = 7.202 × 10-5T˙nuc2.2 and ND = 3.385 × 10-4T˙nuc1.3.

Key wordsGd-Co-Ti alloy    microgravity    liquid-liquid phase separation    solidification    modeling and simulation
收稿日期: 2024-05-20     
ZTFLH:  TG111.4  
基金资助:空间站工程空间应用系统科学实验项目(KJZ-YY-NCL-1-06);国家重点研发计划项目(2021YFA0716303);国家自然科学基金项目(52174380);辽宁省自然科学基金项目(2023-MS-023)
通讯作者: 江鸿翔,hxjiang@imr.ac.cn,主要从事合金凝固过程及组织控制研究; 赵九洲,jzzhao@imr.ac.cn,主要从事合金凝固理论及新材料研究
Corresponding author: JIANG Hongxiang, associate professor, Tel: (024)23971905, E-mail: hxjiang@imr.ac.cn; ZHAO Jiuzhou, professor, Tel: (024)23971918, E-mail: jzzhao@imr.ac.cn
作者简介: 孙昊,女,1996年生,博士生
图1  Gd-2%Co-2%Ti合金样品的宏观形貌和直径分别为285、355、420、445和710 μm的样品心部微观组织的SEM像
图2  直径为445 μm的Gd-2%Co-2%Ti合金样品心部显微组织的SEM像和元素面分布图
图3  直径为445 μm的Gd-2%Co-2%Ti合金样品中富TiCo相粒子的SEM像及其外层壳与内层核的EDS点扫描结果,及Gd、Co、Ti元素沿直线I的线扫描结果
图4  直径分别为285、355、420、445和710 μm的Gd-2%Co-2%Ti合金样品中富TiCo相粒子的二维尺寸分布
图5  Gd-2%Co-2%Ti合金样品中富TiCo相粒子的数密度(ND)随样品尺寸(D)的变化
图6  Gd-Co-Ti体系溶质Co和Ti质量比wCo∶wTi = 1∶1的垂直截面图和平衡条件下Gd-2%Co-2%Ti合金的凝固过程示意图
ParameterSymbolValueUnit
Thermal conductivity of liquid GdλlGd16.0W·K-1·m-1
Thermal conductivity of liquid CoλlCo42.42W·K-1·m-1
Thermal conductivity of liquid TiλlTi36.82W·K-1·m-1
Thermal conductivity of solid GdλsGd8.0W·K-1·m-1
Thermal conductivity of solid CoλsCo69.04W·K-1·m-1
Thermal conductivity of solid TiλsTi21.8W·K-1·m-1
Density of liquid GdρlGd7410 - 0.46(T - 1585)kg·m-3
Density of liquid CoρlCo7750 - 1.09(T - 1768)kg·m-3
Density of liquid TiρlTi4130 - 0.23(T - 1941)kg·m-3
Density of solid GdρsGd7900kg·m-3
Density of solid CoρsCo8860kg·m-3
Density of solid TiρsTi4510kg·m-3
Specific heat capacity of liquid Gdcpl,Gd213J·kg-1·K-1
Specific heat capacity of liquid Cocpl,Co590J·kg-1·K-1
Specific heat capacity of liquid Ticpl,Ti700J·kg-1·K-1
Specific heat capacity of solid Gdcps,Gd116J·kg-1·K-1
Specific heat capacity of solid Cocps,Co427J·kg-1·K-1
Specific heat capacity of solid Ticps,Ti500J·kg-1·K-1
Latent heat of solidification of pure GdLGd9.87 × 104J·kg-1
Latent heat of solidification of pure CoLCo2.63 × 105J·kg-1
Latent heat of solidification of pure TiLTi3.66 × 105J·kg-1
表1  Gd-Co-Ti体系的热物性参数[43]
图7  不同尺寸Gd-2%Co-2%Ti合金样品心部温度随时间(t)的变化
图8  直径为445 μm的Gd-2%Co-2%Ti合金样品心部基体熔体过饱和度(S),富TiCo相液滴的形核率(ID)、ND、平衡体积分数(φle)、实际体积分数(φl),以及初生富Gd固相的平衡体积分数(φsm)随时间的变化
图9  直径为445 μm的Gd-2%Co-2%Ti合金样品心部富TiCo相液滴的平均半径(<RD>)和距离样品中心不同位置(r)处富TiCo相液滴的ND随时间的变化
图10  直径为285和710 μm的Gd-2%Co-2%Ti合金样品心部平衡组元互溶温度(T1)、熔体温度(TMelt)以及富TiCo相液滴的ID、ND随时间的变化
图11  Gd-2%Co-2%Ti合金样品心部富TiCo相液滴的最大形核率(IDMax)和凝固后富TiCo相粒子ND随形核阶段冷却速率(T˙nuc)的变化
[1] Sinha V K, Cheng S F, Wallace W E, et al. Magnetic behavior of heavy rare earth RTiFe11 - x Co x alloys [J]. J. Magn. Magn. Mater., 1989, 81: 227
[2] Gjoka M, Sarafidis C, Niarchos D, et al. Structure and magnetic properties of Gd4(Co, Ti)41 alloys [J]. J. Alloys Compd., 2006, 423: 59
[3] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[4] Dong B W, Jie J C, Dong Z Z, et al. Novel insight into mechanism of secondary phase's morphology evolution in hypomonotectic Cu-Pb-Sn alloy during solidification [J]. J. Mol. Liq., 2019, 292: 111336
[5] Lu W Q, Zhang S G, Li J G. Segregation driven by collision and coagulation of minor droplets in Al-Bi immiscible alloys under aerodynamic levitation condition [J]. Mater. Lett., 2013, 107: 340
[6] Zhao J Z, Jiang H X. Progress in the solidification of monotectic alloys [J]. Acta Metall. Sin., 2018, 54: 682
[6] 赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展 [J]. 金属学报, 2018, 54: 682
[7] Ahlborn H, Loehberg K. Aluminium-indium-experiment SOLUOG—A sounding rocket experiment on immiscible alloys [A]. Proceedings of the 17th Aerospace Sciences Meeting [C]. New Orleans: AIAA, 1979: 172
[8] Carlberg T, Fredriksson H. The influence of microgravity on the solidification of Zn-Bi immiscible alloys [J]. Metall. Trans., 1980, 11A: 1665
[9] Feuerbacher B, Hamacher H, Naumann R J. Binary systems with miscibility gap in the liquid state [A]. Materials Sciences in Space: A Contribution to the Scientific Basis of Space Processing [M]. Berlin, Heidelberg: Springer, 1986: 343
[10] Zhao J Z, Sun H, Zhang L L, et al. In-situ composite microstructure formation of immiscible alloy solidified in space [J]. Natl. Sci. Rev., 2023, 10: nwac261
[11] Zhang Y, Wu Y, Tang Y, et al. In situ study on the oscillation of mobile droplets and force analysis during the directional solidification of Al-Bi alloy [J]. J. Mater. Sci. Technol., 2024, 177: 1
[12] Sun H, Jiang H X, Li Y Q, et al. Control of competitive phase selection by in-situ nanoparticles [J]. J. Alloys Compd., 2023, 962: 171202
[13] Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
[14] Zhang L L, Yang L J, Zhao J Z, et al. Selection of a micro-alloying interface active component to stabilize the interface between droplets and liquid matrix in monotectic alloys [J]. Acta Mater., 2023, 250: 118823
[15] Li Y Q, Zhao J Z, Jiang H X, et al. Microstructure formation in directionally solidified Pb-Al alloy [J]. Acta Metall. Sin., 2022, 58: 1072
[15] 李彦强, 赵九洲, 江鸿翔 等. Pb-Al合金定向凝固组织形成过程 [J]. 金属学报, 2022, 58: 1072
[16] Yang L J, Zhang L L, Zhao J Z, et al. A simple criterion for the selection of interfacial active element to control liquid-liquid decomposition of immiscible alloys [J]. Scr. Mater., 2024, 238: 115753
[17] Sun Q, Jiang H X, Zhao J Z. Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy [J]. Acta Metall. Sin., 2016, 52: 497
[17] 孙 倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响 [J]. 金属学报, 2016, 52: 497
[18] Zhou B F, Lin W H, Shen Z, et al. Growth dynamics of the segregated phase in Zn-6wt%Bi immiscible alloy superheated in super high static magnetic field [J]. J. Alloys Compd., 2021, 879: 160410
[19] Li W, Jiang H X, Zhang L L, et al. Solidification of Al-Bi-Sn immiscible alloy under microgravity conditions of space [J]. Scr. Mater., 2019, 162: 426
[20] Wei C, Wang J, He Y X, et al. Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu-Co immiscible alloy [J]. J. Alloys Compd., 2020, 842: 155502
[21] Liu Y, Li Y X, Guo J J, et al. Numerical simulation of macro-segregation formation during solidification process of immiscible alloys [J]. Acta Metall. Sin., 2003, 39: 679
[21] 刘 源, 李言祥, 郭景杰 等. 难混溶合金凝固过程中宏观偏析形成的数值模拟 [J]. 金属学报, 2003, 39: 679
[22] Zhao J Z, Ratke L. A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. Scr. Mater., 2004, 50: 543
[23] Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
[23] 邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
[24] Wu Y H, Zhu B R, Su J W, et al. A comparative study of metastable phase separation for undercooled liquid Fe35Cu65 alloy under natural and forced cooling conditions [J]. J. Alloys Compd., 2022, 927: 167079
[25] Li Y Q, Jiang H X, Sun H, et al. Microstructure evolution of immiscible alloy solidified under the effect of composite electric and magnetic fields [J]. J. Mater. Sci. Technol., 2023, 162: 247
[26] Wu W H, Wang J Y, Zhai W, et al. A computational and experimental study of ultrasonicated phase separation process for liquid Al-Bi immiscible alloy [J]. Metall. Mater. Trans., 2023, 54B: 1845
[27] Wu Y H, Wang W L, Chang J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys [J]. J. Alloys Compd., 2018, 763: 808
[28] Wu Y H, Wang W L, Wei B B. Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy [J]. Acta Phys. Sin., 2016, 65: 106402
[28] 吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究 [J]. 物理学报, 2016, 65: 106402
[29] Liu S C, Jie J C, Zhang J J, et al. A surface energy driven dissolution model for immiscible Cu-Fe alloy [J]. J. Mol. Liq., 2018, 261: 232
[30] Li W, Sun Q, Jiang H X, et al. Solidification of Al-Bi alloy and influence of microalloying element Sn [J]. Acta Metall. Sin., 2019, 55: 831
[30] 黎 旺, 孙 倩, 江鸿翔 等. Al-Bi合金凝固过程及微合金化元素Sn的影响 [J]. 金属学报, 2019, 55: 831
[31] Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36(4): 12
[31] 赵九洲, 江鸿翔, 孙 倩 等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36(4): 12
[32] Mattern N, Zinkevich M, Han J H, et al. Experimental and thermodynamic assessment of the Co-Gd-Ti system [J]. Calphad, 2016, 54: 144
[33] Sun H. Rapid/sub-rapid solidification microstructure formation and control of liquid-liquid phase separation alloy under ground/space conditions [D]. Hefei: University of Science and Technology of China, 2024
[33] 孙 昊. 地面/空间液-液相分离合金快速/亚快速凝固组织形成及调控 [D]. 合肥: 中国科学技术大学, 2024
[34] Zhao J Z. The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization [J]. Mater. Sci. Eng., 2007, A454-455: 637
[35] Zhao J Z, Kolbe M, Li H L, et al. Formation of the microstructure in a rapidly solidified Cu-Co alloy [J]. Metall. Mater. Trans., 2007, 38A: 1162
[36] Zhao J Z, Gao L L, He J, et al. Liquid-liquid phase transformation kinetics of an atomized Al-Pb alloy drop [J]. Acta Metall. Sin., 2006, 42: 113
[36] 赵九洲, 高玲玲, 何 杰 等. Al-Pb合金雾化液滴的液-液相变动力学 [J]. 金属学报, 2006, 42: 113
[37] Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
[38] Zhao J, Ratke L. Repeated nucleation of minority phase droplets induced by drop motion [J]. Scr. Mater., 1998, 39: 181
[39] Wu M H, Ludwig A, Ratke L. Modeling of marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys [J]. Metall. Mater. Trans., 2003, 34A: 3009
[40] Ishikawa T, Okada J T, Paradis P F, et al. Thermophysical property measurements of liquid gadolinium by containerless methods [J]. Int. J. Thermophys., 2010, 31: 388
[41] Iida T, Guthrie R I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 256
[41] 饭田孝道, Guthrie R I L著 . 冼爱平, 王连文 译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 256
[42] Kaptay G. A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems [J]. Calphad, 2008, 32: 338
[43] Gale W F, Totemeier T C. Smithells Metals Reference Book [M]. 8th Ed., Oxford: Elsevier, 2004: 1127
[1] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[2] 王飞翔, 陈忠奉, 尹晓宇, 熊良华, 谢红兰, 邓彪, 肖体乔. 基于X射线体视成像实现高温合金熔体凝固三维显微结构的原位观测[J]. 金属学报, 2025, 61(7): 1109-1118.
[3] 赵广迪, 李阳, 姚晓雨, 王亮, 李渭滨, 潘玉华, 李维娟, 王兆宇. BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响[J]. 金属学报, 2025, 61(5): 699-716.
[4] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[5] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[6] 徐涛, 邓安元, 李阳, 王恩刚. 连铸结晶器内Ar气泡破碎-聚合和捕获行为的数值模拟[J]. 金属学报, 2025, 61(12): 1895-1910.
[7] 吴宇轩, 唐子渊, 张保泽, 郭晓玉, 罗颖, 刘铁, 王强. 强磁场下Al-Si共晶合金定向凝固组织演变及溶质迁移行为[J]. 金属学报, 2025, 61(11): 1615-1624.
[8] 林美, 郭博静, 王志军, 李俊杰, 王雷, 王锦程, 何峰. 选区激光熔化Ni58Cr23Fe10W5Ti2Ta1Nb1 多主元合金的裂纹形成机理及抑制[J]. 金属学报, 2025, 61(11): 1703-1714.
[9] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[10] 杨林, 马长松, 刘连杰, 李金富. 过冷(Fe1 -x Co x)79.3B20.7 合金的凝固[J]. 金属学报, 2025, 61(1): 99-108.
[11] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[12] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[13] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[14] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[15] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.