Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1710-1720    DOI: 10.11900/0412.1961.2022.00505
  研究论文 本期目录 | 过刊浏览 |
脉冲电流作用下Pb-Al合金的液-固分相过程
李彦强1,2, 赵九洲1,2(), 江鸿翔1,2, 张丽丽1, 何杰1,2
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Liquid-Solid Phase Separation Process of Pb-Al Alloy Under the Effect of Electric Current Pulses
LI Yanqiang1,2, ZHAO Jiuzhou1,2(), JIANG Hongxiang1,2, ZHANG Lili1, HE Jie1,2
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李彦强, 赵九洲, 江鸿翔, 张丽丽, 何杰. 脉冲电流作用下Pb-Al合金的液-固分相过程[J]. 金属学报, 2024, 60(12): 1710-1720.
Yanqiang LI, Jiuzhou ZHAO, Hongxiang JIANG, Lili ZHANG, Jie HE. Liquid-Solid Phase Separation Process of Pb-Al Alloy Under the Effect of Electric Current Pulses[J]. Acta Metall Sin, 2024, 60(12): 1710-1720.

全文: PDF(2817 KB)   HTML
摘要: 

为了控制Pb-Al合金凝固过程、制备原位Al粒子弥散分布于Pb基体的高性能Pb-Al合金阳极材料,本工作开展了脉冲电流作用下Pb-Al液-固分相合金连续凝固实验,建立了脉冲电流下合金液-固分相过程的组织演变模型,并结合实验开展了模拟研究,分析了合金液-固分相过程及脉冲电流的影响机理。结果表明,脉冲电流能有效降低合金液-固分相过程中Al粒子的形核能垒,提升粒子形核率,促进弥散型原位Al粒子铅基复合凝固组织的形成;峰值电流密度jmax存在2个临界值jc1jc2:当jmax  jc1时,脉冲电流影响很弱;当jc1 < jmax < jc2时,粒子形核率和数量密度随jmax增大快速升高;当jmax  jc2时,粒子形核率和数量密度随jmax增大继续升高,但升高速率较慢;电磁力导致Al粒子由试样表面向心部迁移,使合金形成由表面Pb壳和原位Al粒子铅基合金内核组成的壳/核型复合材料。

关键词 脉冲电流偏晶合金液-固分相形核模拟    
Abstract

The Pb-Al alloy, which undergoes liquid-solid (L-S) phase separation, can potentially serve as a high-performance and low-cost anode material for hydrometallurgy and a grid material for lead-acid batteries. For this purpose, a microstructure containing uniformly dispersed micro/nano Al-rich particles in the Pb matrix is desired. However, during cooling of the Pb-Al alloy melt, Al-rich particles nucleate from the matrix melt first, grow, and migrate in the melt until they are caught by the solidification interface. Consequently, Pb-Al alloys often exhibit a solidification microstructure with coarse Al-rich particles or significant phase segregation. Recent studies have shown that the application of electric current pulses (ECPs) during solidification can effectively modify the microstructure evolution. This research aims to investigate the possibility of controlling the L-S phase separation process and microstructure of Pb-Al alloys. To achieve this, continuous solidification experiments were carried out on Pb-Al L-S phase separation alloy while subject to ECPs. A theoretical model describing the microstructure formation during the L-S phase separation process of the alloy under the effect of ECPs was proposed. The microstructure evolution was simulated according to the experimental conditions, and the effect of ECPs on the L-S phase separation process of the alloy was analyzed. It was demonstrated that ECPs can effectively reduce the energy barrier for the nucleation of Al-rich particles during the L-S phase separation process of Pb-Al alloy, enhance the particles' nucleation rate, and reduce the average radius, thereby promoting the formation of a composite containing in situ micro/nano Al-rich particles embedded in the Pb matrix. The peak current density (jmax) has two critical values (jc1 and jc2). When jmax  jc1, ECPs have a negligible effect on the nucleation behavior of Al-rich particles. When jc1 < jmax < jc2, the nucleation rate and number density of the Al-rich particles increase rapidly with increasing jmax. When jmax  jc2, the nucleation rate and number density increase continuously with increasing jmax, but at a lower rate. Furthermore, the electromagnetic force causes migration of the Al-rich particles toward the center of the sample, resulting in the emergence of an Al-poor layer on the surface of the sample and promoting the formation of a special composite composed of a Pb-rich shell and an in situ Al-rich particles reinforced Pb matrix core.

Key wordselectric current pulse    immiscible alloy    liquid-solid phase separation    nucleation    simulation
收稿日期: 2022-10-11     
ZTFLH:  TG111.4  
基金资助:国家重点研发计划项目(2021YFA0716303);国家自然科学基金项目(51971227);国家自然科学基金项目(51974288);国家自然科学基金项目(52174380);中国载人航天工程项目,中国载人航天工程空间应用系统项目(KJZ-YY-NCL06);中国科学院科研仪器设备研制项目(YJKYYQ20210012)
通讯作者: 赵九洲,jzzhao@imr.ac.cn,主要从事合金凝固过程研究
Corresponding author: ZHAO Jiuzhou, professor, Tel: (024)23971918, E-mail: jzzhao@imr.ac.cn
作者简介: 李彦强,男,1994年生,博士生
图1  实验装置及合金凝固过程示意图
图2  不同峰值电流密度(jmax)条件下Pb-0.15Al合金凝固组织的背散射电子(BSE)像
图3  不同jmax条件下Pb-0.15Al合金凝固组织中Al粒子的二维尺寸分布
图4  Pb-0.15Al合金凝固组织中Al粒子的二维平均半径(R¯2D)随jmax的变化
图5  有/无脉冲电流下Pb-0.15Al合金试样表面处凝固组织的BSE像
ParameterValueUnit
Dynamic viscosity of Pb ηm0.0004636exp(1036.7 / T)Pa·s
Thermal conductivity of liquid Pb km15.88W·m-1·K-1
Density of liquid Pb ρm10670 - 1.32(T - 600.4)kg·m-3
Density of solid Al ρβ2700kg·m-3
Specific heat of liquid Pb cpm127.61J·kg-1·K-1
Latent heat of solidification of Pb L24700J·kg-1
Electrical conductivity of liquid Pb σem(0.0479T + 66.6)-110-8 S·m-1
Electrical conductivity of solid Al σeβ[15(exp(0.00057T)–1)]-110-8 S·m-1
表1  Pb-Al体系的热物性参数[28]
图6  不施加脉冲电流时Pb-0.15Al合金凝固界面前沿中心轴线处基体熔体过冷度(ΔT)、过饱和度(S),Al粒子形核率(I)、数量密度(N)及平均半径(R¯)沿z轴变化曲线
图7  不同峰值电流密度条件下,Pb-0.15Al合金凝固界面前沿试样中心轴线处的温度分布曲线
图8  凝固界面前沿Pb-0.15Al合金熔体内的温度场和流场,最大对流速率(Vc,max)随jmax变化曲线,及凝固界面前沿中心轴线处,熔体对流运动速度的z分量(Vcz)沿z轴变化曲线
图9  Pb-0.15Al合金凝固组织中Al粒子的数量密度、平均半径和体积分数沿试样径向的分布
图10  试样表面附近平均尺寸粒子迁移速度的r分量(ur(R¯, r=2 mm))沿z轴变化曲线
图11  凝固组织中Al粒子的N及R¯2D随jmax的变化
图12  不同jmax条件下Pb-0.15Al合金中心轴线处熔体温度(T)、S及I沿z轴变化曲线
图13  峰值电流密度为8 × 108 A/m2时凝固界面前沿中心轴线处,ΔT、S、I、N、R¯沿z轴变化曲线,及位置No.1~6处Al粒子的半径分布函数
1 Cao Y D. Preparation and performance of a novel lead-based alloy anode for zinc electrowinning [D]. Kunming: Kunming University of Science and Technology, 2009
1 曹远栋. 锌电积用新型铅基合金阳极的制备及性能研究 [D]. 昆明: 昆明理工大学, 2009
2 Cole J F, Goodwin F E. The development and potential applications of a Pb-Al alloy [J]. JOM, 1990, 42(6): 41
3 Hu J, Sun Y, Jiang D H, et al. Development of Al-Pb system research [J]. J. Kunming Univ. Sci. Technol. (Sci. Technol.), 2003, 28(1): 23
3 胡 劲, 孙 勇, 姜东慧 等. Al-Pb体系研究进展 [J]. 昆明理工大学学报(理工版), 2003, 28(1): 23
4 Yu S K, Sommer F, Predel B. Isopiestic measurements and assessment of the Al-Pb system [J]. Int. J. Mater. Res., 1996, 87: 574
5 Ahmed T, Jiang H X, Li W, et al. Solidification of Pb-Al alloys under the influence of electric current pulses [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 842
6 Chen Z X, Ding H S, Chen R R, et al. Microstructural evolution and mechanism of solidified TiAl alloy applied electric current pulse [J]. Acta Metall. Sin., 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
6 陈占兴, 丁宏升, 陈瑞润 等. 脉冲电流作用下TiAl合金凝固组织演变及形成机理 [J]. 金属学报, 2019, 55: 611
doi: 10.11900/0412.1961.2018.00504
7 Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal [J]. Acta Metall. Sin., 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
7 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物 [J]. 金属学报, 2020, 56: 257
doi: 10.11900/0412.1961.2019.00391
8 Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ Int., 1990, 30: 27
9 Balasubramani N, Xu Y Y, Zhang Y H, et al. Investigating the grain refinement mechanisms of pulsed electric current, ultrasonic and melt stirring solidification of pure aluminium [J]. JOM, 2021, 73: 3873
doi: 10.1007/s11837-021-04904-7
10 Zhang L M, Liu H N, Li N, et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse [J]. J. Mater. Res., 2016, 31: 396
11 Xu Z, Wang X, Liang D, et al. Electric current pulse induced grain refinement in pure aluminium [J]. Mater. Sci. Technol., 2015, 31: 1595
12 Wang W J, Yuan T C, Li R D, et al. Electrochemical corrosion behaviors of Pb-Ag anodes by electric current pulse assisted casting [J]. J. Electroanal. Chem., 2019, 847: 113250
13 Li N, Zhang L M, Zhang R, et al. Research on grain refinement in hypoeutectic Al-Si alloy during solidification under an alternating electric current pulse [J]. Metals, 2019, 9: 571
14 Zhu J, Wang T M, Cao F, et al. Real-time observation on evolution of droplets morphology affected by electric current pulse in Al-Bi immiscible alloy [J]. J. Mater. Eng. Perform., 2013, 22: 1319
15 Ma T, Sun X S, Ning Y N, et al. Solidification microstructure characteristics of Cu-Pb alloy by ECP treatment [J]. High Temp. Mater. Process., 2021, 40: 382
16 Jiang H X, Zhao J Z, Wang C P, et al. Effect of electric current pulses on solidification of immiscible alloys [J]. Mater. Lett., 2014, 132: 66
17 Jiang H X, He J, Zhao J Z. Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys [J]. Sci. Rep., 2015, 5: 12680
doi: 10.1038/srep12680 pmid: 26228180
18 Lv H Y, Zhou R F, Li L, et al. Effect of electric current pulse on microstructure and corrosion resistance of hypereutectic high chromium cast Iron [J]. Materials, 2018, 11: 2220
19 Geng B Y, Zhou R F, Li Y K, et al. The difference in effects of electric current pulses on inoculation of austenite and M7C3 carbides [J]. Mater. Res. Express, 2020, 7: 096506
20 Gao B Y, Meng X R, Cao Z Q, et al. Bidirectional pulsed current effect on the precipitation behavior of Cu6Sn5: An in situ observation [J]. Mater. Today Commun., 2021, 29: 102825
21 Zhang J, Liu J D, Zhang X F, et al. Effect of high density current pulses on microstructure and mechanical properties of dual-phase wrought superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1635
22 Zhao J Z, Ratke L, Jia J, et al. Modeling and simulation of the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. J. Mater. Sci. Technol., 2002, 18: 197
23 Shangguan D, Ahuja S, Stefanescu D M. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface [J]. Metall. Trans., 1992, 23A: 669
24 Jiang H X. Study of the continuous solidification of monotectic alloys under the effect of electric current [D]. Shenyang: University of Chinese Academy of Sciences, 2014
24 江鸿翔. 电流作用下偏晶合金连续凝固过程研究 [D]. 沈阳: 中国科学院大学, 2014
25 Li H L, Zhao J Z. Convective effect on the microstructure evolution during a liquid-liquid decomposition [J]. Appl. Phys. Lett., 2008, 92: 241902
26 Einstein A. A new determination of molecular dimensions [J]. Ann. Phys., 1906, 19: 289
27 Zhao J, Ratke L. Repeated nucleation of minority phase droplets induced by drop motion [J]. Scr. Mater., 1998, 39: 181
28 Iida T, Guthrie R I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 256
28 Iida T, Guthrie R I L著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 256
29 Li Y Q, Zhao J Z, Jiang H X, et al. Microstructure formation in directionally solidified Pb-Al alloy [J]. Acta Metall. Sin., 2022, 58: 1072
doi: 10.11900/0412.1961.2021.00492
29 李彦强, 赵九洲, 江鸿翔 等. Pb-Al合金定向凝固组织形成过程 [J]. 金属学报, 2022, 58: 1072
doi: 10.11900/0412.1961.2021.00492
30 Gránásy L, Ratke L. Homogeneous nucleation within the liquid miscibility gap of Zn-Pb alloys [J]. Scr. Metall. Mater., 1993, 28: 1329
31 Qin R S, Zhou B L. Effect of electric current pulses on grain size in castings [J]. Int. J. Non-Equilib. Process., 1998, 11: 77
32 Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
32 邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
33 He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys [J]. Acta Mater., 2006, 54: 1749
34 Li H L, Zhao J Z, Zhang Q X, et al. Microstructure formation in a directionally solidified immiscible alloy [J]. Metall. Mater. Trans., 2008, 39A: 3308
[1] 黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
[2] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[3] 周丽, 张明远, 杨欣盛, 刘振宇, 王全兆, 肖伯律, 马宗义. 构型化石墨烯纳米片/2009Al复合材料热膨胀系数模拟[J]. 金属学报, 2024, 60(7): 977-989.
[4] 袁涛, 赵晓虎, 蒋晓青, 任学磊, 李博阳. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理[J]. 金属学报, 2024, 60(3): 323-332.
[5] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[6] 丁宽宽, 丁健翔, 张凯歌, 白忠臣, 张培根, 孙正明. 多场耦合侵蚀下环保Ag/Ti2SnC复合电接触材料的微/纳米力学行为及微结构演变[J]. 金属学报, 2024, 60(12): 1731-1745.
[7] 郭松源, 柳文波, 杨庆成, 戚晓勇, 恽迪. 黏性烧结过程的相场模拟[J]. 金属学报, 2024, 60(12): 1691-1700.
[8] 任松, 吴家柱, 张屹, 张大斌, 曹阳, 尹存宏. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60(12): 1678-1690.
[9] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.
[10] 文通其, 刘怀忆, 龚小国, 叶贝琳, 刘思宇, 李卓远. 深度势能方法在材料科学中的应用[J]. 金属学报, 2024, 60(10): 1299-1311.
[11] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[12] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[13] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[14] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[15] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.