Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1911-1924    DOI: 10.11900/0412.1961.2024.00121
  研究论文 本期目录 | 过刊浏览 |
外加应力下单晶高温合金中 γ' 相筏化的相场模拟
张金虎, 许海生, 郭辉, 李学雄, 徐东生(), 杨锐
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Phase Field Simulation of γ' Phase Rafting in Single Crystal Superalloys Under Applied Stress
ZHANG Jinhu, XU Haisheng, GUO Hui, LI Xuexiong, XU Dongsheng(), YANG Rui
Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张金虎, 许海生, 郭辉, 李学雄, 徐东生, 杨锐. 外加应力下单晶高温合金中 γ' 相筏化的相场模拟[J]. 金属学报, 2025, 61(12): 1911-1924.
Jinhu ZHANG, Haisheng XU, Hui GUO, Xuexiong LI, Dongsheng XU, Rui YANG. Phase Field Simulation of γ' Phase Rafting in Single Crystal Superalloys Under Applied Stress[J]. Acta Metall Sin, 2025, 61(12): 1911-1924.

全文: PDF(3798 KB)   HTML
摘要: 

仅依靠实验方法难以细致表征镍基单晶高温合金服役过程中外加应力对显微组织影响的动态过程,利用计算模拟手段研究外加应力对单晶高温合金中γ'相筏化的影响具有明显优势。本工作依据外加应力类型判断γ基体内所开动的滑移系情况并计算其本征塑性应变,模拟了外加应力下镍基单晶高温合金中γ'相筏化组织的形成过程,并对镍基单晶高温合金筏化过程的微观组织演变规律进行了研究,重点考察了蠕变初期γ相通道内塑性应变对筏化组织形成的影响。结果表明,外加正应力载荷下产生的塑性应变使得γ'相沿特定方向择优生长,是发生γ'相筏化的主要原因,且晶格间错配度直接决定了其筏化类型(N型与P型);γ'/γ界面(如{001}面)上的位错间距显著影响γ'相的形貌(长(宽)-高比),但并不影响γ'相的生长动力学及相同演化时间步下γ'相的体积;与外加正应力不同,外加剪切应力载荷时,筏化组织的粗化方向与水平方向约呈30°或60°夹角,这与激活的滑移系密切相关。此外,不同组合的滑移系可使得γ通道发生扭折现象。

关键词 外加应力高温合金筏化相场法弹塑性    
Abstract

Nickel-based single crystal superalloys are critical materials for manufacturing advanced aircraft engine blades. During operation, microstructural changes in alloys under the applied stress significantly influence their fatigue and creep performances. However, relying solely on experimental methods poses challenges in capturing the dynamic processes by which the applied stress affects the alloy microstructure. Utilizing computational simulations to study the impact of the applied stress on the rafted γ' phase in single crystal superalloys offers distinct advantages. In this study, specific slip systems activated within the γ matrix are identified based on the type of the applied stress and their intrinsic plastic strain is calculated. The simulation models the formation of rafting under the applied stress and investigates the evolution of the microstructure during the rafting process in nickel-based single crystal superalloys. This study focuses on the effect of plastic strain within γ channels on the formation of the rafting morphology during the early stages of creep formation. Plastic strain generated under externally applied tensile stress promotes the preferential growth of γ′ precipitates along specific directions, which is the primary cause of γ′ phase rafting. Moreover, the lattice misfit directly determines the type of rafting (N-type or P-type). The spacing of dislocations at the γ′/γ interfaces, such as along {001} planes, significantly affects the morphology (aspect ratio) of γ′ precipitates but does not influence the growth kinetics or volume of γ′ precipitates at a given time step. In contrast to tensile stress, shear stress induces rafting microstructure coarsening at angles of approximately 30° or 60° relative to the horizontal direction, closely associated with activated slip systems. Additionally, different combinations of slip systems can result in the distortion of γ channels.

Key wordsapplied stress    superalloy    rafting    phase field method    elastoplasticity
收稿日期: 2024-04-25     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目(2021YFA1600601)
通讯作者: 徐东生,dsxu@imr.ac.cn,主要从事金属材料多尺度模拟计算与合金设计
Corresponding author: XU Dongsheng, professor, Tel: (024)23971946, E-mail: dsxu@imr.ac.cn
作者简介: 张金虎,男,1984年生,博士
图1  Ni-Al二元合金相图及γ和γ'相的自由能曲线
图2  错配度为-0.3%时,不同位错间距下{001}晶面上γ'相的生长过程
图3  错配度为+0.3%时,不同位错间距条件下{001}晶面上γ'相的生长过程
图4  不同时间步下γ'相的体积分数
图5  无外加应力条件下,经历噪声扰动后镍基高温合金中γ'相的形核及长大过程
图6  错配度为-0.3%时沿[001]方向外加152 MPa拉伸载荷后,不同时间步下镍基高温合金中γ'相筏化演变过程
图7  时间步0.492 h、错配度-0.3%条件下,沿[001]晶向外加152 MPa拉伸载荷时镍基高温合金中γ相通道中的塑性应变分布
图8  宏观塑性应变分量(ε33)随时间步变化规律。
图9  错配度为+0.3%时沿[001]晶向外加152 MPa拉伸载荷后,不同时间步下镍基高温合金中γ'相筏化演变过程
图10  时间步为0.492 h、错配度为+0.3%时,沿[001]晶向外加152 MPa拉伸载荷后镍基高温合金中γ相通道的塑性应变分布
图11  ε33随时间步变化规律
图12  初始模拟构型及激活不同分类滑移系下的显微组织
[1] Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys [J]. Acta Metall. Sin., 2023, 59: 1125
[1] 冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展 [J]. 金属学报, 2023, 59: 1125
[2] Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59: 1109
[2] 张 健, 王 莉, 谢 光 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2023, 59: 1109
[3] Zhao Y H. Stability of phase boundary between L12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
[4] Zhou N, Shen C, Mills M J, et al. Phase field modeling of channel dislocation activity and γ' rafting in single crystal Ni-Al [J]. Acta Mater., 2007, 55: 5369
[5] Fredholm A, Strudel J L. On the creep resistance of some nickel base single crystals [A]. Proceedings of the Superalloys [C]. Warrendale, Pennsylvania, USA: TMS, 1984: 211
[6] Wang X G, Liu J L, Jin T, et al. Effects of temperature and stress on microstructural evolution during creep deformation of Ru-free and Ru-containing single crystal superalloys [J]. Adv. Eng. Mater., 2015, 17: 1034
[7] Yang M, Zhang J, Wei H, et al. Influence of cooling rate on the formation of bimodal microstructures in nickel-base superalloys during continuous two-step aging [J]. Comput. Mater. Sci., 2018, 149: 14
[8] Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
[8] 刘兴军, 陈悦超, 卢 勇 等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
[9] Zhao Y H. Understanding and design of metallic alloys guided by phase-field simulations [J]. npj Comput. Mater., 2023, 9: 94
[10] Wang D, Li Y S, Shi S J, et al. Crystal plasticity phase-field simulation of creep property of Co-base single crystal superalloy with pre-rafting [J]. Comput. Mater. Sci., 2021, 199: 110763
[11] Yang M, Zhang J, Wei H, et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
[12] Ali M A, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study [J]. Int. J. Plast., 2020, 128: 102659
[13] Gaubert A, Le Bouar Y, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys [J]. Philos. Mag., 2010, 90: 375
[14] Zhang J H, Guo H, Xu H S, et al. Phase-field study on the formation of α variant clusters induced by elastoplastic stress field around the void in titanium alloys [J]. Comput. Mater. Sci., 2022, 215: 111781
[15] Zhou N, Shen C, Mills M, et al. Large-scale three-dimensional phase field simulation of γ'-rafting and creep deformation [J]. Philos. Mag., 2010, 90: 405
[16] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
[17] Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
[18] Wang Y U, Jin Y M, Khachaturyan A G. Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid [J]. J. Appl. Phys., 2002, 92: 1351
[19] Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: John Wiley & Sons, 1983: 201
[20] Zhang J H, Xu D S, Wang Y Z, et al. Influences of dislocations on nucleation and micro-texture formation of α phase in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2016, 52: 905
[20] 张金虎, 徐东生, 王云志 等. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响 [J]. 金属学报, 2016, 52: 905
[21] Zhou N, Shen C, Sarosi P M, et al. γ' rafting in single crystal blade alloys: A simulation study [J]. Mater. Sci. Technol., 2009, 25: 205
[22] Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-based superalloys single crystals [J]. Acta Metall. Mater., 1995, 43: 1791
[23] Wang D, Li Y S, Shi S J, et al. Phase-field simulation of γ' precipitates rafting and creep property of Co-base superalloys [J]. Mater. Des., 2020, 196: 109077
[24] Wang Y Z, Li J. Phase field modeling of defects and deformation [J]. Acta Mater., 2010, 58: 1212
[25] Shen C, Wang Y. Incorporation of γ-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals [J]. Acta Mater., 2004, 52: 683
[26] Zhao Y, Zhang H Y, Wei H, et al. Progress of phase-field investigations of γ' rafting in nickel-base single-crystal superalloys [J]. Chin. Sci. Bull., 2014, 59: 1684
[27] Shen C, Mills M J, Wang Y Z. Modeling dislocation dissociation and cutting of γ' precipitates in Ni-based superalloys by the phase field method [J]. MRS Online Proc. Library, 2002, 753: 521
[28] Shi S J, Li Y S, Yan Z W, et al. Crystal plasticity phase-field simulation of slip system anisotropy during creep of Co-Al-V monocrystal alloy under multidirectional strain [J]. Int. J. Mech. Sci., 2022, 227: 107436
[1] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] 谢信亮, 周丽萍, 余建波, 玄伟东, 陈超越, 王江, 任忠鸣. 横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响[J]. 金属学报, 2025, 61(8): 1203-1216.
[3] 李永梅, 谭子昊, 王新广, 陶稀鹏, 杨彦红, 刘纪德, 刘金来, 李金国, 周亦胄, 孙晓峰. 一种低成本第三代单晶高温合金的高温氧化行为[J]. 金属学报, 2025, 61(7): 1049-1059.
[4] 王小齐, 张金虎, 郭辉, 李学雄, 许海生, 柏春光, 徐东生, 杨锐. 锆合金氧化膜中相变与裂纹演化的相场模拟[J]. 金属学报, 2025, 61(7): 1082-1092.
[5] 何家宝, 王亮, 张朝威, 邹明科, 孟杰, 王新广, 姜肃猛, 周亦胄, 孙晓峰. Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响[J]. 金属学报, 2025, 61(7): 1093-1108.
[6] 王飞翔, 陈忠奉, 尹晓宇, 熊良华, 谢红兰, 邓彪, 肖体乔. 基于X射线体视成像实现高温合金熔体凝固三维显微结构的原位观测[J]. 金属学报, 2025, 61(7): 1109-1118.
[7] 李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
[8] 李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
[9] 周一鸣, 韩勇军, 谢光, 郑伟, 肖炎彬, 潘阳, 张健. 一种镍基高温合金的高温HCl腐蚀行为[J]. 金属学报, 2025, 61(5): 770-782.
[10] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[11] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[12] 彭子超, 罗俊鹏, 赵宇, 周磊, 王旭青, 邹金文. FGH96合金静态再结晶过程的显微组织演化[J]. 金属学报, 2025, 61(2): 235-242.
[13] 叶献文, 姚志浩, 王洪瑛, 王子成, 张砻耀, 董建新. 增材制造难变形高温合金GH4975的裂纹形成及其愈合机制[J]. 金属学报, 2025, 61(12): 1845-1857.
[14] 钟佳, 王法, 江河, 姚志浩, 董建新. γ相含量GH4151变形高温合金铸态组织与开裂敏感性分析[J]. 金属学报, 2025, 61(11): 1653-1663.
[15] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.