|
|
基于原子模拟的金属Fe晶界能与晶界取向相关性分析 |
黄曾鑫1, 蒋逸航2, 赖春明3, 吴庆捷2, 刘大海2( ), 杨亮2( ) |
1.南昌航空大学 工程训练中心 南昌 330063 2.南昌航空大学 航空制造工程学院 南昌 330063 3.湖南化工职业技术学院 机电工程学院 株洲 412000 |
|
Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations |
HUANG Zengxin1, JIANG Yihang2, LAI Chunming3, WU Qingjie2, LIU Dahai2( ), YANG Liang2( ) |
1.Engineering Training Center, Nanchang Hangkong University, Nanchang 330063, China 2.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China 3.School of Mechanical and Electrical Engineering, Hunan Chemical Vocational Technology College, Zhuzhou 412000, China |
引用本文:
黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
Zengxin HUANG,
Yihang JIANG,
Chunming LAI,
Qingjie WU,
Dahai LIU,
Liang YANG.
Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations[J]. Acta Metall Sin, 2024, 60(9): 1289-1298.
1 |
Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
|
2 |
Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
|
3 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
4 |
Humphreys J, Rohrer G S, Rollett A D. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Amsterdam: Elsevier, 2017: 294
|
5 |
Xu K, Liang T, Zhang Z S, et al. Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS2 [J]. Nanoscale, 2022, 14: 1241
doi: 10.1039/d1nr05113j
pmid: 34994370
|
6 |
Rohrer G S. Grain boundary energy anisotropy: A review [J]. J. Mater. Sci., 2011, 46: 5881
|
7 |
Coffman V R, Sethna J P. Grain boundary energies and cohesive strength as a function of geometry [J]. Phys. Rev., 2008, 77B: 44111
|
8 |
Olmsted D L, Foiles S M, Holm E A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy [J]. Acta Mater., 2009, 57: 3694
|
9 |
Sutton A P, Banks E P, Warwick A R. The five-dimensional parameter space of grain boundaries [J]. Proc. Roy. Soc., 2015, 471A: 20150442
|
10 |
Gjostein N A, Rhines F N. Absolute interfacial energies of [001] tilt and twist grain boundaries in copper [J]. Acta Metall., 1959, 7: 319
|
11 |
Feng Y X, Shang J X, Liu Z H, et al. The energy and structure of (110) twist grain boundary in tungsten [J]. Appl. Surf. Sci., 2015, 357: 262
|
12 |
Yang C C, Rollett A D, Mullins W W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry [J]. Scr. Mater., 2001, 44: 2735
|
13 |
Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes [J]. Acta Metall., 1989, 37: 1983
|
14 |
Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—II. Boundaries on the (110) and (113) planes [J]. Acta Metall., 1989, 37: 2823
|
15 |
Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries [J]. Acta Metall. Mater., 1990, 38: 781
|
16 |
Liang C P, Wang W Q, Tang S, et al. Molecular dynamics simulation of symmetrical tilt grain boundary of body-centered cubic tungsten [J]. Chin. J. Nonferrous Met., 2021, 31: 1757
|
16 |
梁超平, 王文琦, 唐 赛 等. 钨对称倾斜晶界的分子动力学计算模拟 [J]. 中国有色金属学报, 2021, 31: 1757
|
17 |
Tschopp M A, McDowell D L. Asymmetric tilt grain boundary structure and energy in copper and aluminium [J]. Philos. Mag., 2007, 87: 3871
|
18 |
Wolf D. On the relationship between symmetrical tilt, twist, “special”, and “favored” grain boundaries [J]. J. Phys. Coll., 1985, 46: C4-197
|
19 |
Merkle K L. High-resolution electron microscopy of grain boundaries [J]. Interface Sci., 1995, 2: 311
|
20 |
Yang L, Lai C M, Li S Y. Atomistic simulations of energies for arbitrary grain boundaries. Part II: Statistical analysis of energies for tilt and twist grain boundaries [J]. Comput. Mater. Sci., 2019, 162: 268
|
21 |
Kim H K, Ko W S, Lee H J, et al. An identification scheme of grain boundaries and construction of a grain boundary energy database [J]. Scr. Mater., 2011, 64: 1152
|
22 |
Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
|
23 |
Ratanaphan S, Boonkird T, Sarochawikasit R, et al. Atomistic simulations of grain boundary energies in tungsten [J]. Mater. Lett., 2017, 186: 116
|
24 |
Lee B J, Choi S H. Computation of grain boundary energies [J]. Model. Simul. Mater. Sci. Eng., 2004, 12: 621
|
25 |
Li S Y, Yang L, Lai C M. Atomistic simulations of energies for arbitrary grain boundaries. Part I: Model and validation [J]. Comput. Mater. Sci., 2019, 161: 330
|
26 |
Morawiec A. Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions [J]. Acta Mater., 2000, 48: 3525
|
27 |
Li J, Dillon S J, Rohrer G S. Relative grain boundary area and energy distributions in nickel [J]. Acta Mater., 2009, 57: 4304
|
28 |
Lee B J, Baskes M I, Kim H, et al. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals [J]. Phys. Rev., 2001, 64B: 184102
|
29 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
30 |
Sutton A P, Balluffi R W. On geometric criteria for low interfacial energy [J]. Acta Metall., 1987, 35: 2177
|
31 |
Yu Q, Nosonovsky M, Esche S K. Monte Carlo simulation of grain growth of single-phase systems with anisotropic boundary energies [J]. Int. J. Mech. Sci., 2009, 51: 434
|
32 |
Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium [J]. Acta Mater., 2006, 54: 3673
|
33 |
Wolf D. Structure and energy of general grain boundaries in bcc metals [J]. J. Appl. Phys., 1991, 69: 185
|
34 |
Wolf D. A broken-bond model for grain boundaries in face-centered cubic metals [J]. J. Appl. Phys., 1990, 68: 3221
|
35 |
Brokman A, Balluffi R W. Coincidence lattice model for the structure and energy of grain boundaries [J]. Acta Metall., 1981, 29: 1703
|
36 |
Randle V. The role of the grain boundary plane in cubic polycrystals [J]. Acta Mater., 1998, 46: 1459
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|