Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1289-1298    DOI: 10.11900/0412.1961.2023.00172
  研究论文 本期目录 | 过刊浏览 |
基于原子模拟的金属Fe晶界能与晶界取向相关性分析
黄曾鑫1, 蒋逸航2, 赖春明3, 吴庆捷2, 刘大海2(), 杨亮2()
1.南昌航空大学 工程训练中心 南昌 330063
2.南昌航空大学 航空制造工程学院 南昌 330063
3.湖南化工职业技术学院 机电工程学院 株洲 412000
Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations
HUANG Zengxin1, JIANG Yihang2, LAI Chunming3, WU Qingjie2, LIU Dahai2(), YANG Liang2()
1.Engineering Training Center, Nanchang Hangkong University, Nanchang 330063, China
2.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
3.School of Mechanical and Electrical Engineering, Hunan Chemical Vocational Technology College, Zhuzhou 412000, China
引用本文:

黄曾鑫, 蒋逸航, 赖春明, 吴庆捷, 刘大海, 杨亮. 基于原子模拟的金属Fe晶界能与晶界取向相关性分析[J]. 金属学报, 2024, 60(9): 1289-1298.
Zengxin HUANG, Yihang JIANG, Chunming LAI, Qingjie WU, Dahai LIU, Liang YANG. Analysis of the Correlation Between the Energy and Crystallographic Orientation of Grain Boundaries in Fe Based on Atomistic Simulations[J]. Acta Metall Sin, 2024, 60(9): 1289-1298.

全文: PDF(1897 KB)   HTML
摘要: 

晶界能(γ)会显著影响金属材料的诸多物理和力学性能,然而bcc金属内γ与晶界取向间相关性特征的认识仍非常有限。为揭示这些潜在特征,本研究采用截断球状双晶分子动力学模型,计算了bcc金属Fe内涵盖0°~180°取向差角(θ)、40个取向差轴( O )共1568组倾斜晶界的能量,统计性分析了γ与晶界取向参数的相关性并揭示了相关机理。结果表明,对于具有不同 O 的晶界,γθ的变化趋势在大角度范围内会存在显著差异;从统计性角度来看,γθ和偏转角较小时整体上随这2类角度的增大而提高,随后整体保持平稳。非重位点阵晶界的能量并不高于重位点阵(coincidence site lattice,CSL)晶界,在较小θ范围内随θ的变化趋势与CSL晶界相同。当 O 从取向投影三角形的内部向边部再向顶点变化时,倾斜晶界结构的对称性整体上逐渐升高从而对应能量逐渐降低,<111>顶点附近的能量整体最低。具有低Miller指数或高密排晶界面的晶界并不一定具有较低能量,γ整体上随晶界面对应表面能的增大而升高直至整体保持平稳。γ与重位因子(Σ)整体上无可见相关性,但固定 Oγ(θ)曲线上的能量低谷一般都位于具有极小Σ的晶界。此外,还发现bcc金属中γ与晶界取向之间潜在的相关性及规律与fcc金属部分相似或相同。

关键词 晶界晶界能晶体取向bcc原子模拟    
Abstract

The grain boundary (GB) energy is one of the fundamental structure-dependent properties of GB and plays a crucial role in the GB-related behaviors and properties of polycrystalline materials. An in-depth understanding of GB energy will help to explore the corresponding mechanisms and provide significant guidance for tailoring material properties based on GB engineering. The crystallographic orientation of GB strongly dominates the GB energy. However, a relatively comprehensive understanding of the orientation dependence of the GB energy is still lacking, especially for bcc materials. In this study, the energies of 1568 tilt GBs in bcc Fe, which covers the misorientation angle (θ) of 0°-180° and 40 distinct misorientation axes ( O ), were computed using the cutoff sphere bicrystal molecular dynamics model. The energy dataset was used to statistically analyze the correlation between GB energy (γ) and GB crystallographic orientation, thereby revealing the underlying mechanisms. The results show that the tendencies of γ-θ correlationcan be considerably different in the high-angle range for GBs with distinct O. Statistically, GB energies increase with θ and disorientation angle in the low-angle range and then level off for higher angles. The energies for noncoincident site lattice (non-CSL) GBs are not necessarily higher than those of CSL GBs and follow the same trend in the low-θ range as CSL GBs. The energies of the tilt GBs decrease with the variation of O from the central regions to the edge and then the corners of the stereographic triangle due to the increasing tendency of the symmetry of the boundary structure. Therefore, the lowest energies are observed for GBs with O close to <111>. Relatively low energies are not observed for GBs terminated by low-index or dense planes. The GB energy shows an overall increasing trend with the surface energy of the boundary plane until a plateau in the GB energy is reached. No distinct correlation is observed between the GB energy and coincidence index (Σ) value. However, the cusp in the γ(θ) curve for GBs with a common O is found to be generally located at the GB with a much lower Σ than its neighboring GBs. Additionally, the potential correlations and laws concerning GB energy and its crystallographic orientation for bcc metals are observed to be partially similar or consistent with those of fcc metals.

Key wordsgrain boundary    grain boundary energy    crystallographic orientation    bcc    atomistic simulation
收稿日期: 2023-04-17     
ZTFLH:  TG111  
基金资助:国家自然科学基金项目(52065045);江西省杰出青年人才计划项目(20192BCBL23002)
通讯作者: 刘大海,dhliu@nchu.edu.cn,主要从事电磁成形方面的研究
杨 亮,L.yang@nchu.edu.cn,主要从事多尺度模拟方面的研究
Corresponding author: LIU Dahai, professor, Tel: 15180185399, E-mail: dhliu@nchu.edu.cn
YANG Liang, Tel: 17770181534, E-mail: L.yang@nchu.edu.cn
作者简介: 黄曾鑫,女,1995年生,硕士
图1  球状双晶模型构建特定取向差(Δ g )和特定晶界面取向( n )晶界示意图
图2  晶界能库中部分取向差轴( O )下晶界的能量(γ)随取向差角(θ)的变化
图3  晶界能库中所有晶界的能量以及拟合所得晶界能随θ的变化
图4  晶界能库中所有晶界的能量随偏转角(α)的变化
图5  以不同形式呈现的数据库中晶界能随取向差轴的变化
图6  以不同形式呈现的数据库中晶界能随晶界面取向的变化
图7  金属Fe中部分自由表面对应表面能以及数据库中晶界面对应表面能和晶界能随表面能的变化
图8  数据库中所有晶界的能量和部分固定取向差轴下晶界的能量与重位因子(Σ)的相关性
1 Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
2 Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
3 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
4 Humphreys J, Rohrer G S, Rollett A D. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Amsterdam: Elsevier, 2017: 294
5 Xu K, Liang T, Zhang Z S, et al. Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS2 [J]. Nanoscale, 2022, 14: 1241
doi: 10.1039/d1nr05113j pmid: 34994370
6 Rohrer G S. Grain boundary energy anisotropy: A review [J]. J. Mater. Sci., 2011, 46: 5881
7 Coffman V R, Sethna J P. Grain boundary energies and cohesive strength as a function of geometry [J]. Phys. Rev., 2008, 77B: 44111
8 Olmsted D L, Foiles S M, Holm E A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy [J]. Acta Mater., 2009, 57: 3694
9 Sutton A P, Banks E P, Warwick A R. The five-dimensional parameter space of grain boundaries [J]. Proc. Roy. Soc., 2015, 471A: 20150442
10 Gjostein N A, Rhines F N. Absolute interfacial energies of [001] tilt and twist grain boundaries in copper [J]. Acta Metall., 1959, 7: 319
11 Feng Y X, Shang J X, Liu Z H, et al. The energy and structure of (110) twist grain boundary in tungsten [J]. Appl. Surf. Sci., 2015, 357: 262
12 Yang C C, Rollett A D, Mullins W W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry [J]. Scr. Mater., 2001, 44: 2735
13 Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes [J]. Acta Metall., 1989, 37: 1983
14 Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—II. Boundaries on the (110) and (113) planes [J]. Acta Metall., 1989, 37: 2823
15 Wolf D. Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries [J]. Acta Metall. Mater., 1990, 38: 781
16 Liang C P, Wang W Q, Tang S, et al. Molecular dynamics simulation of symmetrical tilt grain boundary of body-centered cubic tungsten [J]. Chin. J. Nonferrous Met., 2021, 31: 1757
16 梁超平, 王文琦, 唐 赛 等. 钨对称倾斜晶界的分子动力学计算模拟 [J]. 中国有色金属学报, 2021, 31: 1757
17 Tschopp M A, McDowell D L. Asymmetric tilt grain boundary structure and energy in copper and aluminium [J]. Philos. Mag., 2007, 87: 3871
18 Wolf D. On the relationship between symmetrical tilt, twist, “special”, and “favored” grain boundaries [J]. J. Phys. Coll., 1985, 46: C4-197
19 Merkle K L. High-resolution electron microscopy of grain boundaries [J]. Interface Sci., 1995, 2: 311
20 Yang L, Lai C M, Li S Y. Atomistic simulations of energies for arbitrary grain boundaries. Part II: Statistical analysis of energies for tilt and twist grain boundaries [J]. Comput. Mater. Sci., 2019, 162: 268
21 Kim H K, Ko W S, Lee H J, et al. An identification scheme of grain boundaries and construction of a grain boundary energy database [J]. Scr. Mater., 2011, 64: 1152
22 Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
23 Ratanaphan S, Boonkird T, Sarochawikasit R, et al. Atomistic simulations of grain boundary energies in tungsten [J]. Mater. Lett., 2017, 186: 116
24 Lee B J, Choi S H. Computation of grain boundary energies [J]. Model. Simul. Mater. Sci. Eng., 2004, 12: 621
25 Li S Y, Yang L, Lai C M. Atomistic simulations of energies for arbitrary grain boundaries. Part I: Model and validation [J]. Comput. Mater. Sci., 2019, 161: 330
26 Morawiec A. Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions [J]. Acta Mater., 2000, 48: 3525
27 Li J, Dillon S J, Rohrer G S. Relative grain boundary area and energy distributions in nickel [J]. Acta Mater., 2009, 57: 4304
28 Lee B J, Baskes M I, Kim H, et al. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals [J]. Phys. Rev., 2001, 64B: 184102
29 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
30 Sutton A P, Balluffi R W. On geometric criteria for low interfacial energy [J]. Acta Metall., 1987, 35: 2177
31 Yu Q, Nosonovsky M, Esche S K. Monte Carlo simulation of grain growth of single-phase systems with anisotropic boundary energies [J]. Int. J. Mech. Sci., 2009, 51: 434
32 Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium [J]. Acta Mater., 2006, 54: 3673
33 Wolf D. Structure and energy of general grain boundaries in bcc metals [J]. J. Appl. Phys., 1991, 69: 185
34 Wolf D. A broken-bond model for grain boundaries in face-centered cubic metals [J]. J. Appl. Phys., 1990, 68: 3221
35 Brokman A, Balluffi R W. Coincidence lattice model for the structure and energy of grain boundaries [J]. Acta Metall., 1981, 29: 1703
36 Randle V. The role of the grain boundary plane in cubic polycrystals [J]. Acta Mater., 1998, 46: 1459
[1] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[2] 许增光, 周士祺, 李晓, 刘志权. (111)取向纳米孪晶Cu的抗氧化性能及焊料润湿性[J]. 金属学报, 2024, 60(7): 957-967.
[3] 李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322.
[4] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[5] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[6] 冯小铮, 王卫国, Gregory S. Rohrer, 陈松, 洪丽华, 林燕, 王宗谱, 周邦新. 晶粒长大对高纯Al {111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[9] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[11] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[12] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[13] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[14] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.