|
|
3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素 |
张瑶1, 齐敏2, 孙佳3, 吴婷1, 马英杰2, 王皞1( ), 杨锐2 |
1.上海理工大学 材料与化学学院 增材制造研究院 上海 200093 2.中国科学院金属研究所 沈阳 110016 3.云南锡业新材料有限公司 昆明 650106 |
|
3D Phase Field Simulation of Factors Influencing the Microstructure Morphology of Lamellar Ti-6Al-4V Alloy |
ZHANG Yao1, QI Min2, SUN Jia3, WU Ting1, MA Yingjie2, WANG Hao1( ), YANG Rui2 |
1.Interdisciplinary Center for Additive Manufacturing, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Yunnan Tin New Material Company Limited, Kunming 650106, China |
引用本文:
张瑶, 齐敏, 孙佳, 吴婷, 马英杰, 王皞, 杨锐. 3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素[J]. 金属学报, 2024, 60(9): 1265-1278.
Yao ZHANG,
Min QI,
Jia SUN,
Ting WU,
Yingjie MA,
Hao WANG,
Rui YANG.
3D Phase Field Simulation of Factors Influencing the Microstructure Morphology of Lamellar Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2024, 60(9): 1265-1278.
1 |
Greenfield M A, Margolin H. The mechanism of void formation, void growth, and tensile fracture in an alloy consisting of two ductile phases [J]. Metall. Trans., 1972, 3: 2649
|
2 |
Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
|
3 |
Yoder G R, Cooley L A, Crooker T W. Quantitative analysis of microstructural effects on fatigue crack growth in widmanstätten Ti-6A1-4V and Ti-8Al-1Mo-1V [J]. Eng. Fract. Mech., 1979, 11: 805
|
4 |
Hall I W, Hammond C. Fracture toughness and crack propagation in titanium alloys [J]. Mater. Sci. Eng., 1978, 32: 241
|
5 |
Banerjee R, Bhattacharyya D, Collins P C, et al. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study [J]. Acta Mater., 2004, 52: 377
|
6 |
Chong Y, Bhattacharjee T, Tsuji N. Bi-lamellar microstructure in Ti-6Al-4V: Microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2019, A762: 138077
|
7 |
Ma Y J, Liu J R, Lei J F, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2009, 19: 1789
|
7 |
马英杰, 刘建荣, 雷家峰 等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响 [J]. 中国有色金属学报, 2009, 19: 1789
|
8 |
Yang M, Wang G, Teng C Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta Metall. Sin., 2013, 48: 148
|
8 |
杨 梅, 王 刚, 滕春禹 等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟 [J]. 金属学报, 2013, 48: 148
|
9 |
Wang Y Z, Ma N Y, Chen Q, et al. Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys [J]. JOM, 2005, 57(9): 32
|
10 |
Sun J, Qi M, Zhang J H, et al. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71: 98
|
11 |
Huang X N, Ding S B, Yue W. Cryogenic treatment on Ti6Al4V alloy fabricated by electron beam melting: Microstructure and mechanical properties [J]. J. Mater. Res. Technol., 2022, 20: 3323
|
12 |
Wang G, Xu D S, Yang R. Phase field simulation on sideplates formation in Ti-6Al-4V alloy [J]. Acta Phys. Sin, 2009, 58(suppl.1) : S343
|
12 |
王 刚, 徐东生, 杨 锐. Ti-6Al-4V合金中片层组织形成的相场模拟 [J]. 物理学报, 2009, 58(): S343
|
13 |
Shi R P, Choudhuri D, Kashiwar A, et al. α phase growth and branching in titanium alloys [J]. Philos. Mag., 2022, 102: 389
|
14 |
Shi R P, Li D, Antonov S, et al. Origin of morphological variation of grain boundary precipitates in titanium alloys [J]. Scr. Mater., 2022, 214: 114651
|
15 |
Shi R P, Zhou N, Niezgoda S R, et al. Microstructure and transformation texture evolution during α precipitation in polycrystalline α/β titanium alloys—A simulation study [J]. Acta Mater., 2015, 94: 224
|
16 |
Ginzburg V L, Landau L D. On the theory of superconductivity [A]. Translation in Collected Papers of L.D. Landau [C]. Oxford: Pergamon, 1965: 546
|
17 |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
|
18 |
Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
|
19 |
Langer J S. Models of pattern formation in first-order phase transitions [A]. Directions in Condensed Matter Physics [M]. Singapore: World Scientific, 1986: 165
|
20 |
Hohenberg P C, Halperin B I. Theory of dynamic critical phenomena [J]. Rev. Mod. Phys., 1977, 49: 435
|
21 |
Wang Y, Chen L Q, Khachaturyan A G. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap [J]. Acta Metall. Mater., 1993, 41: 279
|
22 |
Chen L Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems [J]. Scr. Metall. Mater., 1993, 29: 683
|
23 |
Khachaturyan A G. Theory of structural transformations in solids [M]. New York: Wiley-Interscience Publications, 1983: 574
|
24 |
Sun J, Li X X, Zhang J H, et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in β→α phase transformation in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2020, 56: 1113
|
24 |
孙 佳, 李学雄, 张金虎 等. Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟 [J]. 金属学报, 2020, 56: 1113
|
25 |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
|
26 |
Zhang J H. The influences of stresses and defects on the variant selection and texture during phase transformation in Ti-6Al-4V alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
|
26 |
张金虎. 应力及缺陷对Ti-6Al-4V合金相变过程中变体选择及织构的影响 [D]. 沈阳: 中国科学院金属研究所, 2016
|
27 |
Zhu J Z, Liu Z K, Vaithyanathan V, et al. Linking phase-field model to CALPHAD: Application to precipitate shape evolution in Ni-base alloys [J]. Scr. Mater., 2002, 46: 401
|
28 |
Andersson J O, Agren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. Appl. Phys., 1992, 72: 1350
|
29 |
Chen Q, Ma N, Wu K S, et al. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V [J]. Scr. Mater., 2004, 50: 471
|
30 |
Zhang J H, Qi M, Xu H S, et al. A phase-field model for simulating the growth of α sideplates with branching in titanium alloy [J]. J. Mater. Sci. Technol., 2022, 123: 154
|
31 |
Ma N, Yang F, Shen C, et al. Modeling formation of α sideplates in alpha/beta Ti-alloys—Effect of interfacial energy anisotropy and coherency elastic strain energy [A]. Ti-2007 Science and Technology [C]. Sendai: The Japan Institute of Metals, 2007: 287
|
32 |
Sun Z C, Guo S S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α + β phase field [J]. Acta Mater., 2013, 61: 2057
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|