Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1265-1278    DOI: 10.11900/0412.1961.2023.00392
  研究论文 本期目录 | 过刊浏览 |
3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素
张瑶1, 齐敏2, 孙佳3, 吴婷1, 马英杰2, 王皞1(), 杨锐2
1.上海理工大学 材料与化学学院 增材制造研究院 上海 200093
2.中国科学院金属研究所 沈阳 110016
3.云南锡业新材料有限公司 昆明 650106
3D Phase Field Simulation of Factors Influencing the Microstructure Morphology of Lamellar Ti-6Al-4V Alloy
ZHANG Yao1, QI Min2, SUN Jia3, WU Ting1, MA Yingjie2, WANG Hao1(), YANG Rui2
1.Interdisciplinary Center for Additive Manufacturing, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Yunnan Tin New Material Company Limited, Kunming 650106, China
引用本文:

张瑶, 齐敏, 孙佳, 吴婷, 马英杰, 王皞, 杨锐. 3D相场模拟研究Ti-6Al-4V合金片层组织形貌的影响因素[J]. 金属学报, 2024, 60(9): 1265-1278.
Yao ZHANG, Min QI, Jia SUN, Ting WU, Yingjie MA, Hao WANG, Rui YANG. 3D Phase Field Simulation of Factors Influencing the Microstructure Morphology of Lamellar Ti-6Al-4V Alloy[J]. Acta Metall Sin, 2024, 60(9): 1265-1278.

全文: PDF(6635 KB)   HTML
摘要: 

Ti-6Al-4V是典型双相钛合金,不同的微观组织决定其力学性能,但由于缺少晶界α、片层αα侧枝等相对取向关系的三维信息,难以实现组织的精准调控。本工作基于Pandat和Thermo-Calc热力学数据以及DICTRA动力学数据,采用相场法模拟Ti-6Al-4V合金片层α组织的三维形貌。研究了在820℃热处理温度下,界面能各向异性对片层α生长的影响并分析了不同时刻的溶质场。结果表明,片层α组织的演化形貌受界面能各向异性的影响,界面能各向异性由0.4:0.1:1.0增长到0.8:0.1:1.0时,片层α由粗大棒状转为细长针状。界面能各向异性越大,片层生长的速率越快。不同界面能各向异性条件下片层α组织的主要差别在于片层的疏密程度和生长速度,而生长方向基本无异,单片层的宽度逐渐变宽。相场模拟结果与实验结果吻合较好,片层组织的三维模拟结果展示出比扫描电镜二维照片更丰富的片层侧枝细节。在3D模拟中可观测到晶粒不同位置处侧枝的形貌。结果表明,侧枝与主片层之间的夹角既有实验观测到的30°,还存在任意角度。

关键词 Ti-6Al-4V相场片层α组织界面能溶质场    
Abstract

Ti-6Al-4V, a typical dual-phase titanium alloy, has mechanical properties largely determined by its microstructures. However, the absence of three-dimensional (3D) information regarding the relative orientation relationships of grain boundary α, α lamellae, and α side branches, hinders precise microstructure control. In this study, using thermodynamic data from Pandat and Thermo-Calc, along with kinetic data from DICTRA, the 3D morphology of α lamellae in Ti-6Al-4V alloy was simulated via the phase field method. This study simulated the influence of interfacial energy anisotropy on the growth of α lamellae at a heat treatment temperature of 820°C and analyzed the corresponding solute field. The findings reveal that interface energy anisotropy considerably affects the morphology of α lamellae. When the anisotropy of the interface energy increased from 0.4:0.1:1.0 to 0.8:0.1:1.0, the α lamellae transformed from a thick rod shape to a slender needle shape. Higher anisotropy levels lead to accelerated growth rates of α lamellae. Variation in interface anisotropy, primarily affect the density and growth rate of α lamellae, while their growth direction remains consistent. Additionally, the width of individual lamellae progressively widens under different interface anisotropies. The phase-field simulation results align closely with experimental findings. Notably, the 3D simulation results of α lamellae organization offer more detailed insights into the side branches of α lamellae than two-dimensional (2D) SEM images. In 3D simulation, it can be observed the growth morphology of side branches at different positions of grains. The results indicate that the angle between the main lamellae and the side branches includes experimental observations of 30° and random angles.

Key wordsTi-6Al-4V    phase-field    α lamellae    interfacial energy    solute field
收稿日期: 2023-09-19     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(U2241245,91960202);航空科学基金项目(2022Z053092001);冲击环境材料技术重点实验室基金项目(6142902220301);冲击波物理与爆轰物理重点实验室基金项目(2022JCJQLB05702)
通讯作者: 王 皞,haowang7@usst.edu.cn,主要从事材料基因工程/增材制造方面的研究
Corresponding author: WANG Hao, professor, Tel: (021)55270108, E-mail: haowang7@usst.edu.cn
作者简介: 张 瑶,女,1998年生,硕士
图1  不同热处理温度下3种界面能各向异性比在相同时间下的片层形貌
图2  热处理温度820℃下不同时刻(t)片层的生长演化形貌
图3  不同时刻相同z-x切面上(y = 252.85Δx)片层α侧枝形貌演化,及Ti-4211合金的微观组织[10]
图4  晶粒不同z-x切面处侧枝在t = 2000 s的形貌(单元长度Δx = 5 × 10-8 m)
图5  t = 500 s时晶粒不同位置处α片层的生长形貌
图6  820℃下α相体积分数随时间的演化规律
图7  820℃下不同界面能各向异性条件下α生长形貌
图8  不同界面能各向异性条件下在t = 1000 s时z-y切面的片层生长形貌
图9  t = 1000 s时,kx 分别为0.4、0.6和0.8条件下晶粒不同x-z切面上片层的生长形貌
图10  820℃生长100 s时不同界面能各向异性条件下Al的溶质分布
图11  不同界面能各向异性条件下V的溶质分布
图12  t = 50 s时片层组织的生长
图13  t = 100 s时片层组织的生长情况
图14  t = 100 s时不同界面能各向异性下的片层形貌
图15  kx:ky:kz = 0.6:0.1:1.0条件下t = 2000 s时晶粒不同位置处的z-y切面形貌
1 Greenfield M A, Margolin H. The mechanism of void formation, void growth, and tensile fracture in an alloy consisting of two ductile phases [J]. Metall. Trans., 1972, 3: 2649
2 Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
3 Yoder G R, Cooley L A, Crooker T W. Quantitative analysis of microstructural effects on fatigue crack growth in widmanstätten Ti-6A1-4V and Ti-8Al-1Mo-1V [J]. Eng. Fract. Mech., 1979, 11: 805
4 Hall I W, Hammond C. Fracture toughness and crack propagation in titanium alloys [J]. Mater. Sci. Eng., 1978, 32: 241
5 Banerjee R, Bhattacharyya D, Collins P C, et al. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy—An orientation microscopy study [J]. Acta Mater., 2004, 52: 377
6 Chong Y, Bhattacharjee T, Tsuji N. Bi-lamellar microstructure in Ti-6Al-4V: Microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2019, A762: 138077
7 Ma Y J, Liu J R, Lei J F, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2009, 19: 1789
7 马英杰, 刘建荣, 雷家峰 等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响 [J]. 中国有色金属学报, 2009, 19: 1789
8 Yang M, Wang G, Teng C Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta Metall. Sin., 2013, 48: 148
8 杨 梅, 王 刚, 滕春禹 等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟 [J]. 金属学报, 2013, 48: 148
9 Wang Y Z, Ma N Y, Chen Q, et al. Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys [J]. JOM, 2005, 57(9): 32
10 Sun J, Qi M, Zhang J H, et al. Formation mechanism of α lamellae during βα transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71: 98
11 Huang X N, Ding S B, Yue W. Cryogenic treatment on Ti6Al4V alloy fabricated by electron beam melting: Microstructure and mechanical properties [J]. J. Mater. Res. Technol., 2022, 20: 3323
12 Wang G, Xu D S, Yang R. Phase field simulation on sideplates formation in Ti-6Al-4V alloy [J]. Acta Phys. Sin, 2009, 58(suppl.1) : S343
12 王 刚, 徐东生, 杨 锐. Ti-6Al-4V合金中片层组织形成的相场模拟 [J]. 物理学报, 2009, 58(): S343
13 Shi R P, Choudhuri D, Kashiwar A, et al. α phase growth and branching in titanium alloys [J]. Philos. Mag., 2022, 102: 389
14 Shi R P, Li D, Antonov S, et al. Origin of morphological variation of grain boundary precipitates in titanium alloys [J]. Scr. Mater., 2022, 214: 114651
15 Shi R P, Zhou N, Niezgoda S R, et al. Microstructure and transformation texture evolution during α precipitation in polycrystalline α/β titanium alloys—A simulation study [J]. Acta Mater., 2015, 94: 224
16 Ginzburg V L, Landau L D. On the theory of superconductivity [A]. Translation in Collected Papers of L.D. Landau [C]. Oxford: Pergamon, 1965: 546
17 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
18 Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28: 258
19 Langer J S. Models of pattern formation in first-order phase transitions [A]. Directions in Condensed Matter Physics [M]. Singapore: World Scientific, 1986: 165
20 Hohenberg P C, Halperin B I. Theory of dynamic critical phenomena [J]. Rev. Mod. Phys., 1977, 49: 435
21 Wang Y, Chen L Q, Khachaturyan A G. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap [J]. Acta Metall. Mater., 1993, 41: 279
22 Chen L Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems [J]. Scr. Metall. Mater., 1993, 29: 683
23 Khachaturyan A G. Theory of structural transformations in solids [M]. New York: Wiley-Interscience Publications, 1983: 574
24 Sun J, Li X X, Zhang J H, et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in β→α phase transformation in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2020, 56: 1113
24 孙 佳, 李学雄, 张金虎 等. Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟 [J]. 金属学报, 2020, 56: 1113
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
26 Zhang J H. The influences of stresses and defects on the variant selection and texture during phase transformation in Ti-6Al-4V alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
26 张金虎. 应力及缺陷对Ti-6Al-4V合金相变过程中变体选择及织构的影响 [D]. 沈阳: 中国科学院金属研究所, 2016
27 Zhu J Z, Liu Z K, Vaithyanathan V, et al. Linking phase-field model to CALPHAD: Application to precipitate shape evolution in Ni-base alloys [J]. Scr. Mater., 2002, 46: 401
28 Andersson J O, Agren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. Appl. Phys., 1992, 72: 1350
29 Chen Q, Ma N, Wu K S, et al. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V [J]. Scr. Mater., 2004, 50: 471
30 Zhang J H, Qi M, Xu H S, et al. A phase-field model for simulating the growth of α sideplates with branching in titanium alloy [J]. J. Mater. Sci. Technol., 2022, 123: 154
31 Ma N, Yang F, Shen C, et al. Modeling formation of α sideplates in alpha/beta Ti-alloys—Effect of interfacial energy anisotropy and coherency elastic strain energy [A]. Ti-2007 Science and Technology [C]. Sendai: The Japan Institute of Metals, 2007: 287
32 Sun Z C, Guo S S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α + β phase field [J]. Acta Mater., 2013, 61: 2057
[1] 刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[8] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] 樊永霞, 王建, 张学哲, 王建忠, 汤慧萍. SEBM成形片状极小曲面点阵材料的力学性能[J]. 金属学报, 2021, 57(7): 871-879.
[11] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[12] 孙佳, 李学雄, 张金虎, 王刚, 杨梅, 王皞, 徐东生. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8): 1113-1122.
[13] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[14] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[15] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.