Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1250-1264    DOI: 10.11900/0412.1961.2022.00611
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金中S元素对基体与热障涂层界面稳定性的影响
王京京1, 姚志浩1(), 张鹏1, 赵杰1, 张迈1, 王蕾2, 董建新1, 陈迎3
1.北京科技大学 材料科学与工程学院 北京 100083
2.北京科技大学 物理系 北京 100083
3.Fracture and Reliability Research Institute, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys
WANG Jingjing1, YAO Zhihao1(), ZHANG Peng1, ZHAO Jie1, ZHANG Mai1, WANG Lei2, DONG Jianxin1, CHEN Ying3
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
3.Fracture and Reliability Research Institute, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Japan
引用本文:

王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
Jingjing WANG, Zhihao YAO, Peng ZHANG, Jie ZHAO, Mai ZHANG, Lei WANG, Jianxin DONG, Ying CHEN. Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys[J]. Acta Metall Sin, 2024, 60(9): 1250-1264.

全文: PDF(3210 KB)   HTML
摘要: 

镍基高温合金中的S元素会对合金性能产生负面影响,在服役过程中含S体系的界面处会发生氧化膜剥落等现象,进而导致合金发生失效。本工作利用第一性原理计算,围绕S元素在镍基高温合金及其涂层的偏聚现象,研究了S元素对合金及NiAl涂层的影响机制。分析了Ni3Al/NiAl、NiAl/Al2O3的纯净界面和含S元素界面2种模型的界面黏附功、偏聚能及界面电荷情况。结果表明,合金中含S元素的体系界面黏附功变小,进而降低了界面稳定性;S元素在各自的体系内均有向界面偏聚的倾向。通过分析其界面电子结构(如二次差分电荷密度、Bader电荷、局域电子密度、态密度等)的演变,发现S元素的存在会减弱界面附近的键合,进而降低局部连接的紧密性。最后揭示了S元素对体系界面稳定性的影响机制。

关键词 镍基高温合金S元素界面体系电子结构第一性原理计算    
Abstract

The existence of elemental S in nickle-based superalloys negatively impacts their performance. The oxide film at the interface of the nickle-based superalloy peels off during the service process, leading to the failure of the alloy. However, the influence mechanism of the elemental S on the interface of the matrix and the coating layer is yet to be studied. Herein, the influence mechanism of the elemental S on the nickle-based superalloy and NiAl coating was studied using the first-principle calculation, especially focusing on the S segregation phenomenon. The interface adhesion work, segregation energy, and interface charge of the pure and S-doped interfaces of Ni3Al/NiAl and NiAl/Al2O3 were analyzed. The calculated results show that the interfacial adhesion work of the system decreases when the elemental S is present, resulting in reduced interface stability; in these systems, the elemental S tends to segregate toward the interface. By analyzing various aspects of the interface electronic structures (such as differential charge density, Bader charge, electron localization function, and densities of states), it was found that the bonding near the interface was weakened in the system with the elemental S, thereby reducing the tightness of the local connection. The influence mechanism of the elemental S on the interfacial stability of the system was finally revealed.

Key wordsnickle-based superalloy    S element    interface system    electronic structure    first-principle calculation
收稿日期: 2022-12-01     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51771017,52271087)
通讯作者: 姚志浩,zhihaoyao@ustb.edu.cn,主要从事高温合金及计算材料学研究
Corresponding author: YAO Zhihao, professor, Tel: 13671347055, E-mail: zhihaoyao@ustb.edu.cn
作者简介: 王京京,女,2001年生,硕士生
图1  具有热障涂层的镍基高温合金截面显微组织及合金基体-粘结层-热障涂层示意图
图2  Ni3Al单胞模型和NiAl单胞模型
图3  Ni3Al(111)、NiAl(110)和Al2O3(0001)表面模型
图4  Ni3Al/NiAl相界面模型和NiAl/Al2O3相界面模型
图5  Ni3Al/NiAl界面体系能量-相间距(E-d)图
图6  NiAl/Al2O3界面E-d图
图7  含S元素Ni3Al/NiAl界面体系结构优化前及优化后的模型
图8  含S元素NiAl/Al2O3界面体系结构优化前及优化后的模型
SystemA / nm2ES1 / eVES2 / eVES1/S2 / eVWad / (J·m-2)
Pure interface0.8903-235.024-241.350-494.8603.427
Interface with S0.8967-235.024-241.350-496.2043.394
表1  Ni3Al/NiAl界面模型界面黏附功计算值
SystemA / nm2ES1 / eVES2 / eVES1/S2 / eVWad / (J·m-2)
Pure interface0.8325-883.450-293.219-1182.7101.162
Interface with S0.8330-883.477-292.060-1178.7330.449
表2  NiAl/Al2O3界面模型界面黏附功计算数值
图9  含S元素Ni3Al/NiAl体系界面处二次差分电荷密度图
图10  Ni3Al/NiAl界面处S原子附近(010)面电荷密度分布
图11  含S元素NiAl/Al2O3体系界面处二次差分电荷密度图
图12  NiAl/Al2O3界面处S原子附近(010)面电荷密度分布
图13  Ni3Al/NiAl体系中部分原子序号
图14  Ni3Al/NiAl界面近邻原子Bader电荷
AtomBader value
Pure interface systemInterface system within S
Ni9.974558e10.112086e
Al-8.673444e-8.661022e
S-0.986231e
表3  Ni3Al/NiAl界面体系Bader电荷转移的统计情况
图15  NiAl/Al2O3体系中部分原子序号
图16  NiAl/Al2O3界面近邻原子Bader电荷转移
AtomPure interface systemInterface system within S
S-0.512175e
Ni7.239174e7.235117e
Al-51.712821e-52.242194e
O57.058943e58.220612e
表4  NiAl/Al2O3界面体系Bader电荷转移的统计情况
图17  Ni3Al/NiAl体系(010)截面的电子局域化函数(ELF)投影图
图18  NiAl/Al2O3体系(010)截面的ELF投影图
图19  Ni3Al/NiAl界面体系的总态密度(TDOS)
图20  Ni3Al/NiAl界面体系S原子及其近邻Al、Ni原子的局域分波态密度(LPDOS)图
图21  NiAl/Al2O3界面体系的TDOS图
图22  NiAl/Al2O3界面体系S原子及其近邻AlAl2O3、O、NiNiAl、AlNiAl原子的LPDOS图
1 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
1 刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
2 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
2 刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
3 Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
4 Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
5 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
6 Zhang T Y, Wu C, Xiong Z, et al. Research progress in materials and preparation techniques of thermal barrier coatings [J]. Laser Optoelectron. Prog., 2014, 51: 030004
6 张天佑, 吴 超, 熊 征 等. 热障涂层材料及其制备技术的研究进展 [J]. 激光与光电子学进展, 2014, 51: 030004
7 Xu H B, Gong S K, Liu F S. Recent development in materials design of thermal barrier coatings for gas turbine [J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(1): 7
7 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究 [J]. 航空学报, 2000, 21(1): 7
8 Czech N, Fietzek H, Juez-Lorenzo M, et al. Studies of the bond-coat oxidation and phase structure of TBCs [J]. Surf. Coat. Technol., 1999, 113: 157
9 Zhang Z P, Zhang S Q, Wang D, et al. Effect of ppm level sulfur addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Foundry, 2019, 68: 232
9 张宗鹏, 张思倩, 王 栋 等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响 [J]. 铸造, 2019, 68: 232
10 Walsh J M, Anderson N P. STP39061S Application of auger electron spectroscopy to the study of embrittlement in nickel [S]. West Conshohocken: ASTM E42, 1976: 58
11 Dong J X, Liu X B, Xie X S, et al. The segregation of sulfur and phosphorvs in nickel-base alloy 718 [J]. Acta Metall. Sin. (Eng. Lett.), 1997, 10: 510
12 Molins R, Rouzou I, Hou P. Chemical and morphological evolution of a (NiPt)Al bond coat [J]. Oxid. Met., 2006, 65: 263
13 Molins R, Hou P Y. Characterization of chemical and microstructural evolutions of a NiPtAl bondcoat during high temperature oxidation [J]. Surf. Coat. Technol., 2006, 201: 3841
14 Chieux M, Duhamel C, Molins R, et al. Sulfur localization in NiPtAl/superalloy systems after high temperature isothermal oxidation [J]. Oxid. Met., 2014, 81: 115
15 Ozfidan I, Chen K Y, Fu M. Effects of additives and impurity on the adhesive behavior of the NiAl(110)/Al2O3 (0001) interface: An ab initio study [J]. Metall. Mater. Trans., 2011, 42A: 4126
16 Chen Y, Yao Z H, Dong J X, et al. Molecular dynamics simulation of the γ′ phase deformation behaviour in nickel-based superalloys [J]. Mater. Sci. Technol., 2022, 38: 1439
17 Chen K, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ' interface of Ni-base single crystal superalloys [J]. Acta Mater., 2003, 51: 1079
18 Fedorova E, Monceau D, Oquab D, et al. Characterisation of oxide scale adherence after the high temperature oxidation of nickel-based superalloys [J]. Mater. High Temp., 2012, 29: 243
19 Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
20 Vargas-Hernández R A. Bayesian optimization for calibrating and selecting hybrid-density functional models [J]. J. Phys. Chem., 2020, 124A: 4053
21 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
22 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
23 Eriş R, Akdeniz M V, Mekhrabov A O. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys [J]. Intermetallics, 2019, 109: 37
24 Carling K M, Carter E A. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface [J]. Acta Mater., 2007, 55: 2791
25 Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations [J]. J. Phys., 1996, 8: 6525
26 Huang M L, Wang C Y. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics [J]. Chin. Phys., 2016, 25B:107104
27 Zhu C X, Yu T, Wang C Y, et al. First-principles study of Ni/Ni3Al interface doped with Re, Ta and W [J]. Comput. Mater. Sci., 2020, 175: 109586
28 Raynolds J E, Smith J R, Srolovitz D J, et al. Adhesion in NiAl-Cr from first principles [J]. MRS Online Proc. Libr., 1995, 409: 177
29 Liu S Y, Shang J X, Wang F H, et al. Surface segregation of Si and its effect on oxygen adsorption on a γ-TiAl(111) surface from first principles [J]. J. Phys., 2009, 21: 225005
30 Tang J. First-principles study of the strengthening mechanism of Fe-Cr-Al alloy interface [D]. Shenyang: Shenyang Normal University, 2015
30 唐 杰. Fe-Cr-Al合金界面强化机理的第一性原理研究 [D]. 沈阳: 沈阳师范大学, 2015
31 Tang J, Zhang G Y, Bao J S, et al. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface [J]. Acta Phys. Sin., 2014, 63: 187101
31 唐 杰, 张国英, 鲍君善 等. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究 [J]. 物理学报, 2014, 63: 187101
32 Ahmed F A M, Xue H T, Tang F L, et al. Effects of Zr-Re/W Co-segregation behavior on the thermodynamic stability and fracture strength of γ-Ni/γ'-Ni3Al interface [J]. Phys. Lett., 2021, 408A: 127466
33 Tanaka S, Kohyama M. Ab initio calculations of the 3C-SiC(111)/Ti polar interfaces [J]. Phys. Rev., 2001, 64B: 235308
34 Bao Z Y, Guo X C, Shang F L. An atomistic investigation into the nature of fracture of Ni/Al2O3 interface with yttrium dopant under tension [J]. Eng. Fract. Mech., 2015, 150: 239
35 Dutta R S, Arya A, Yusufali C, et al. Formation of aluminides on Ni-based superalloy 690 substrate, their characterization and first-principle Ni(111)/NiAl(110) interface simulations [J]. Surf. Coat. Technol., 2013, 235: 741
36 Sun S N, Kioussis N, Ciftan M. First-principles determination of the effects of boron and sulfur on the ideal cleavage fracture in Ni3Al [J]. Phys. Rev., 1996, 54B: 3074
37 Zhao Y H, Jing J H, Chen L W, et al. Current research status of interface of ceramic-metal laminated composite material for armor protection [J]. Acta Metall. Sin., 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
37 赵宇宏, 景舰辉, 陈利文 等. 装甲防护陶瓷-金属叠层复合材料界面研究进展 [J]. 金属学报, 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
38 Rivoaland L, Maurice V, Josso P, et al. The effect of sulfur segregation on the adherence of the thermally-grown oxide on NiAl—I: Sulfur segregation on the metallic surface of NiAl(001) single-crystals and at NiAl(001)/Al2O3 interfaces [J]. Oxid. Met., 2003, 60: 137
39 Zhao Y H. Stability of phase boundary between l12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
40 Han L, Zheng S W, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int. J. Fatigue, 2021, 153: 106500
41 Audigié P, Rouaix-Vande Put A, Malié A, et al. Observation and modeling of α-NiPtAl and kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature [J]. Surf. Coat. Technol., 2014, 260: 9
42 Hu H, Li S R, Ren Y S, et al. Site preference and brittle-ductile transition mechanism of B2-NiAl with ternary elements additions form first-principles calculations [J]. Physica, 2020, 576B: 411703
43 Rong X M, Chen J, Li J T, et al. Structural stability and mech-anical property of Ni(111)-graphene-Ni(111) layered composite: A first-principles study [J]. Jpn. J. Appl. Phys., 2015, 54: 125503
[1] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[2] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[3] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[4] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[9] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[12] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[13] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[14] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[15] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.