Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 926-936    DOI: 10.11900/0412.1961.2022.00224
  研究论文 本期目录 | 过刊浏览 |
铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响
陈诚1, 杨光昱1(), 金梦辉1, 王强1, 汤鑫2, 程会民3, 介万奇1
1 西北工业大学 凝固技术国家重点实验室 西安 710072
2 中国航发北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
3 中国兵器工业集团西安北方光电科技防务有限公司 西安 710043
Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy
CHEN Cheng1, YANG Guangyu1(), JIN Menghui1, WANG Qiang1, TANG Xin2, CHENG Huimin3, JIE Wanqi1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 Xi'an North Optoelectronics Technology Defense Co. Ltd., China North Industries Group Corporation Limited, Xi'an 710043, China
引用本文:

陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
Cheng CHEN, Guangyu YANG, Menghui JIN, Qiang WANG, Xin TANG, Huimin CHENG, Wanqi JIE. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. Acta Metall Sin, 2024, 60(7): 926-936.

全文: PDF(3027 KB)   HTML
摘要: 

为揭示离心铸造工艺在晶粒细化和力学性能提升等方面的优势,本工作对比分析了铸型正反转搅动动力学细晶法离心铸造工艺和常规重力铸造工艺条件下K4169合金典型结构特征件的凝固组织和室温力学性能,研究了2种工艺条件下得到的合金组织、元素偏析、第二相分布以及断口组织形貌和室温力学性能。结果表明,铸型正反转搅动处理可使K4169合金铸态组织明显细化,当铸型正反转持续时间为4 s时,K4169合金的晶粒组织细化效果显著,晶粒尺寸从重力铸造工艺下的(5.37 ± 0.21) mm减小至(0.27 ± 0.01) mm;铸造K4169合金的初生相破碎,枝晶形貌退化,合金元素偏析程度减轻,凝固组织中Laves相数量减少,碳化物数量略有增加;铸型正反转4 s条件下,铸态合金的室温抗拉强度比重力铸造条件下提高了31.4%。

关键词 K4169合金铸型正反转熔模铸造凝固组织室温力学性能    
Abstract

The service temperature of K4169 superalloy aeronautic turbine disks and other important aeronautic components is generally below the equi-strength temperature, and grain refinement can significantly improve the service performance. Compared with the conventional gravity casting process, the centrifugal casting process as a dynamic grain refinement method plays an important role in grain refinement, feeding, and molten filling of the casting. A precision casting with typical structural characteristics of the K4169 superalloy was prepared using the centrifugal casting process with the mold positive and negative rotation method and the conventional gravity casting process, respectively. The alloy microstructure, element segregation, secondary phase distribution, fracture microstructure, and mechanical properties at room temperature were compared and studied under two process conditions. The as-cast structure of the K4169 superalloy can be significantly refined using the mold positive and negative rotation method. The grain refinement of the experimental alloy was the most significant when the casting mold was reversed for 4 s, and the grain size under gravity casting decreased from (5.37 ± 0.21) mm to (0.27 ± 0.01) mm. Also, the primary phase of the experimental alloy was broken and the dendrite morphology was degraded that the coarse dendrites were replaced by broken dendrites and rose-shaped crystals after positive and negative rotations. Compared with unidirectional rotation, the segregation of alloying elements decreased, the number of Laves phases in the solidified structure was reduced, and the number of carbides was slightly increased. The tensile strength of the K4169 alloy at room temperature under the positive and negative rotation duration of 4 s was 31.4% higher than that under conventional gravity casting.

Key wordsK4169 superalloy    mold positive and negative rotation    investment casting    solidification microstructure    room-temperature mechanical property
收稿日期: 2022-05-07     
ZTFLH:  TG249.4  
基金资助:国家科技重大专项项目(J2019-VI-0004-0118)
通讯作者: 杨光昱,ygy@nwpu.edu.cn,主要从事高性能合金及其铸造工艺研究
Corresponding author: YANG Guangyu, professor, Tel: (029)81662098, E-mail: ygy@nwpu.edu.cn
作者简介: 陈 诚,男,1998年生,硕士生
图1  拉伸试样尺寸
图2  不同铸造工艺下K4169高温合金特征件的铸态组织
图3  不同铸造工艺下铸态K4169高温合金特征件组织中的初生相形貌
图4  不同铸造工艺下K4169高温合金特征件的合金元素偏析系数
图5  不同铸造工艺下铸态K4169高温合金特征件组织的XRD谱
图6  K4169高温合金组织中各相及其EDS分析位置
Position in Fig.6AlTiCrFeNiNbMoC
10.280.8413.769.7136.3631.187.870
203.908.188.1050.3422.167.320
308.240.610.591.1368.870.1820.38
表1  K4169合金组织中各相EDS分析结果 (mass fraction / %)
图7  K4169高温合金铸态组织中基体和不同第二相的显微硬度
图8  不同铸造工艺下铸态K4169高温合金特征件组织中Laves相和碳化物的分布情况
图9  不同铸造工艺下铸态K4169高温合金特征件组织中Laves相和碳化物的面积分数
ProcessUTS / MPaEL / %
CC638.43 ± 10.3619.76 ± 1.24
P&NR 4s838.73 ± 3.4929.83 ± 1.76
P&NR 8s808.16 ± 10.6020.63 ± 0.23
表2  不同铸造工艺下铸态K4169高温合金特征件本体试样的室温拉伸力学性能
图10  不同铸造工艺下铸态K4169高温合金特征件试样的室温拉伸断口形貌
1 Liao D M, Cao L, Chen T, et al. Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method [J]. China Foundry, 2016, 13: 123
2 Ding H S, Wang G T, Chen R R, et al. Microstructure and mechanical properties of Ni3Al intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. China Foundry, 2017, 14: 169
3 Condruz M R, Matache G, Paraschiv A, et al. Homogenization heat treatment and segregation analysis of equiaxed CMSX-4 superalloy for gas turbine components [J]. J. Therm. Anal. Calorim., 2018, 134: 443
4 Zhang J, Guo Y Y, Zhang M, et al. Low-cycle fatigue and creep-fatigue behaviors of a second-generation nickel-based single-crystal superalloy at 760oC [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1423
5 Zhao G D, Zang X M, Qi F. Effect of boron on isothermal oxidation behavior of a nickel-base superalloy with high Al and Ti contents [J]. J. Alloys Compd., 2020, 846: 156490
6 Rao L S, Raju K, Jha A K, et al. Microstructural and tribological characteristics of Al-10Cu-Fe alloy produced by vertical centrifugal casting process [J]. Trans. Indian Inst. Met., 2018, 71: 1427
7 Rakoczy Ł, Cygan R. Analysis of temperature distribution in shell mould during thin-wall superalloy casting and its effect on the resultant microstructure [J]. Arch. Civil Mech. Eng., 2018, 18: 1441
8 Gao Z T, Hu R, Guo W, et al. Grain refinement by authigenic inoculation inherited from the medium-range order structure of Ni-Cr-W superalloy [J]. J. Mater. Eng. Perform., 2018, 27: 2421
9 Xiong Y H, Wei X Y, Du J, et al. Grain refinement of superalloy IN718C by the addition of inoculants [J]. Metall. Mater. Trans., 2004, 35A: 2111
10 Guan R G, Tie D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 409
11 Jin W Z, Li T J, Yin G M. Development of dynamic refining technology and its application in superalloy [J]. Foundry, 2007, 56: 6
11 金文中, 李廷举, 殷国茂. 动力学法晶粒细化技术的进展及在高温合金中的应用 [J]. 铸造, 2007, 56: 6
12 Woulds M, Benson H. Development of a conventional fine grain casting process [A]. Proceedings of the Superalloy 1984 [C]. New York: TMS-AIME, 1984: 3
13 Brinegar J R, Norris L F, Rozenberg L. Microcast-X fine grain casting—A progress report [A]. Proceedings of the Superalloys 1984 [C]. Warrendale: TMS, 1984: 23
14 Yuan W M, Xue G H, Tang X, et al. Research on integral turbine fine grain casting process by mould stirring method [J]. Foundry, 1997, (2): 24
14 袁文明, 薛广海, 汤 鑫 等. 铸型搅动法整体涡轮细晶铸造工艺的研究 [J]. 铸造, 1997, (2): 24
15 Li F, Wang D H, Jiang Y, et al. Effect of centrifugal casting process on mold filling and grain structure of K418B turbine guide [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 3065
16 Tang X, Yu B Z, Liu F X, et al. Investigation on mechanical properties of fine grain cast by mould agitation [J]. J. Aeron. Mater. 2003, 23(4): 16
16 汤 鑫, 于保正, 刘发信 等. 铸型搅动细晶铸造与力学性能 [J]. 航空材料学报, 2003, 23(4): 16
17 Hu P P, Gai Q D, Li X H, et al. Effect of mold agitation fine grain casting on microstructure and tensile properties of K492M alloy integral wheel [J]. Foundry, 2016, 65: 1045
17 胡聘聘, 盖其东, 李相辉 等. 铸型搅动细晶铸造对K492M合金向心叶轮组织与拉伸性能的影响 [J]. 铸造, 2016, 65: 1045
18 Cozar R, Pineau A. Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type alloys [J]. Metall. Mater. Trans., 1973, 4B: 47
19 Hong S Z, Zeng Z P. Effects of the specific pressure on grain size in squeeze casting [J]. Spec. Cast. Nonferrous Alloys, 2002, (6): 26
19 洪慎章, 曾振鹏. 挤压铸造比压对晶粒尺寸的影响 [J]. 特种铸造及有色合金, 2002, (6): 26
20 Ye X C. Analysis on thermodynamics and dynamics of the microstructure solidified under centrifugal pressure [D]. Harbin: Harbin Institute of Technology, 2006
20 叶喜葱. 离心压力下凝固组织形成热力学与动力学分析 [D]. 哈尔滨: 哈尔滨工业大学, 2006
21 Hong S J, Chen W P, Wang T W. A diffraction study of the γ" phase in INCONEL 718 superalloy [J]. Metall. Mater. Trans., 2001, 32A: 1887
22 Li A L, Tang X, Gai Q D, et al. Effect of heat treatment on microstructure of K4169 superalloy [J]. J. Aeron. Mater., 2006, 26: 311
22 李爱兰, 汤 鑫, 盖其东 等. 热处理工艺对K4169合金微观组织的影响 [J]. 航空材料学报, 2006, 26: 311
23 Guo J T. Materials Science and Engineering for Superalloys (Part 1) [M]. Beijing: Science Press, 2008: 30
23 郭建亭. 高温合金材料学(上) [M]. 北京: 科学出版社, 2008: 30
24 Sims C T. A contemporary view of cobalt-base alloy [J]. JOM, 1969, 21(12): 27
25 Sui Y W. Formation and evolution of defect during the vertical centrifugal casting of titanium alloy [D]. Harbin: Harbin Institute of Technology, 2006
25 隋艳伟. 钛合金立式离心铸造缺陷形成与演化规律 [D]. 哈尔滨: 哈尔滨工业大学, 2009
26 Zhou Y H, Hu Z L, Jie W Q. Solidification Technology [M]. Beijing: China Machine Press, 1998: 11
26 周尧和, 胡壮麟, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998: 11
27 Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
doi: 10.11900/0412.1961.2019.00088
27 张 军, 介子奇, 黄太文 等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
28 Radhakrishna C H, Rao K P. The formation and control of Laves phase in superalloy 718 welds [J]. J. Mater. Sci., 1997, 32: 1977
29 Szeliga D. Manufacturing of thin-walled Ni-based superalloy castings using alternative thermal insulating module to control solidification [J]. J. Mater. Process. Technol., 2020, 278: 116503
30 Ling L S B, Han Y F, Zhou W, et al. Study of microsegregation and laves phase in INCONEL718 superalloy regarding cooling rate during solidification [J]. Metall. Mater. Trans., 2015, 46A: 354
31 Matysiak H, Zagorska M, Balkowiec A, et al. The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy [J]. JOM, 2016, 68: 185
32 Du B N, Yang J X, Cui C Y, et al. Effects of grain refinement on the micro-structure and tensile behavior of K417G superalloy [J]. Mater. Sci. Eng., 2015, A623: 59
33 Soula A, Renollet Y, Boivin D, et al. Analysis of high-temperature creep deformation in a polycrystalline nickel-base superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 301
34 Tewo R K, Rutto H L, Focke W W, et al. Investment casting pattern material based on paraffin wax fortified with EVA and filled with PMMA [J]. J. Appl. Polym. Sci., 2020, 137: 48774
35 Antonsson T, Fredriksson H. The effect of cooling rate on the solidification of INCONEL 718 [J]. Metall. Mater. Trans., 2005, 36B: 85
36 Khalifa W, Tsunekawa Y, Okumiya M. Effect of ultrasonic treatment on the Fe-intermetallic phases in ADC12 die cast alloy [J]. J. Mater. Process. Technol., 2010, 210: 2178
37 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
38 Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scr. Metall. Mater., 1991, 25: 33
39 Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scr. Metall. Mater., 1986, 20: 43
[1] 官邦, 汪东红, 马洪波, 疏达, 丁正一, 崔加裕, 孙宝德. 熔模铸件尺寸控制的数字孪生建模关键技术与应用[J]. 金属学报, 2024, 60(4): 548-558.
[2] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[5] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[6] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[7] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[8] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[9] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[10] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[11] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[12] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[13] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[14] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[15] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.