|
|
Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为 |
王金鑫1, 姚美意1( ), 林雨晨1, 陈刘涛2, 高长源2, 徐诗彤1, 胡丽娟1, 谢耀平1, 周邦新1 |
1 上海大学 材料研究所 上海 200072 2 中广核研究院有限公司 深圳 518031 |
|
High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition |
WANG Jinxin1, YAO Meiyi1( ), LIN Yuchen1, CHEN Liutao2, GAO Changyuan2, XU Shitong1, HU Lijuan1, XIE Yaoping1, ZHOU Bangxin1 |
1 Institute of Materials, Shanghai University, Shanghai 200072, China 2 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China |
引用本文:
王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
Jinxin WANG,
Meiyi YAO,
Yuchen LIN,
Liutao CHEN,
Changyuan GAO,
Shitong XU,
Lijuan HU,
Yaoping XIE,
Bangxin ZHOU.
High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. Acta Metall Sin, 2024, 60(5): 670-680.
1 |
Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys[J]. Mater. China, 2022, 41: 354
|
1 |
贾豫婕, 林希衡, 邹小伟 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41: 354
|
2 |
Liu J Z. Nuclear Structural Materials[M]. Beijing: Chemical Industry Press, 2007: 5
|
2 |
刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5
|
3 |
Wang R S, Geng J Q, Weng L K, et al. Zirconium alloy cladding be-haviors under LOCA condition[J]. Mater. Rev., 2011, 25(suppl.2) :501
|
3 |
王荣山, 耿建桥, 翁立奎 等. LOCA工况下锆合金包壳的行为概述[J]. 材料导报, 2011, 25(): 501
|
4 |
Kim J H, Lee M H, Choi B K, et al. Embrittlement behavior of zircaloy-4 cladding during oxidation and water quench[J]. Nucl. Eng. Des., 2005, 235: 67
doi: 10.1016/j.nucengdes.2004.08.030
|
5 |
Gao Y, Yang M X, Hu Y, et al. Effect of cooling rate on residual plasticity of homemade ZIRLO alloy after LOCA[J]. Atomic. Energy Sci. Technol., 2019, 53: 1310
|
5 |
高 阳, 杨明馨, 胡 勇 等. 冷却速率对国产ZIRLO合金LOCA后残余塑性的影响[J]. 原子能科学技术, 2019, 53: 1310
|
6 |
Grosse M, Stuckert J, Steinbrück M, et al. Secondary hydriding during LOCA—Results from the QUENCH-L0 test[J]. J. Nucl. Mater., 2012, 420: 575
doi: 10.1016/j.jnucmat.2011.11.045
|
7 |
Shishov V N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation[J]. J. ASTM Int., 2010, 7: 1
|
8 |
Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys[J]. Acta. Metall Sin., 2011, 47: 1216
doi: 10.3724/SP.J.1037.2011.00211
|
8 |
邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为[J]. 金属学报, 2011, 47: 1216
|
9 |
Gao W, Zhang X, Wang Z P, et al. Study of oxidation behavior of M5 and ZIRLO zirconium alloy in high temperature vapor[J]. J. Xi'an Technol. Univ., 2016, 36: 473
|
9 |
高 巍, 张 娴, 王正品 等. M5和ZIRLO合金高温水蒸气氧化行为研究[J]. 西安工业大学学报, 2016, 36: 473
|
10 |
Huang W. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-1Nb-xM alloys[D]. Shanghai: Shanghai University, 2020
|
10 |
黄 微. Zr-1Nb-xM合金的常规腐蚀行为及模拟LOCA下的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2020
|
11 |
Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200oC[J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
|
12 |
Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200oC in steam[J]. Nucl. Power Eng., 2010, 31(2): 85
|
12 |
刘彦章, 邱 军, 刘 欣 等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程, 2010, 31(2): 85
|
13 |
Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA)[J]. Atomic Energy Sci Technol., 1993, 27: 376
|
13 |
马树春, 孙源珍, 陈望春 等. PWR失水事故工况下燃料包壳与水蒸汽反应研究[J]. 原子能科学技术, 1993, 27: 376
|
14 |
Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy[J]. Rare Met. Mater. Eng., 2022, 51: 1837
|
14 |
张佳楠, 姚美意, 查学鹏 等. 添加Nb对Zr-0.75Sn-0.35Fe-0.15Cr合金高温蒸汽氧化行为的影响[J]. 稀有金属材料与工程, 2022, 51: 1837
|
15 |
Qu C. Oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in high-temperature steam[D]. Shanghai: Shanghai University, 2019
|
15 |
瞿 忱. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2019
|
16 |
Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al. Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties[A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2011: 1
|
17 |
Kim H G, Park J Y, Jeong Y H. Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
doi: 10.1016/j.jnucmat.2005.04.061
|
18 |
Wang R S, Weng L K, Zhang Y W, et al. Development of research on corrosion resistance of Zr-Nb alloy[J]. Mater. Rep., 2011, 25(13): 10
|
18 |
王荣山, 翁立奎, 张晏玮 等. Zr-Nb合金耐腐蚀性能的研究进展[J]. 材料导报, 2011, 25(13): 105
|
19 |
Toffolon-Masclet C, Barbéris P, Brachet J C, et al. Study of Nb and Fe precipitation in α-phase temperature range (400 to 500℃) in Zr-Nb-(Fe-Sn) alloys[A]. Zirconium in the Nuclear Industry: 14th International Symposium[C]. Stockholm, Sweden: American Society for Testing and Materials, 2005: 1
|
20 |
Wang R S, Weng L K, Zhang Y W, et al. Effect of Fe on the precipitate characteristics and out-of-pile corrosion behavior of Zr-1Nb-xFe alloys[J]. Mater. Sci. Forum, 2013, 743-744: 1
doi: 10.4028/www.scientific.net/MSF
|
21 |
Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs[A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2000: 609
|
22 |
Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests[A]. Zirconium in the nuclear industry: 11th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 1996: 850
|
23 |
Li M S. High Temperature Corrosion of Metals[M]. Beijing: Metallurgical Industry Press, 2001: 36
|
23 |
李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 36
|
24 |
Wang D, Zhang Y P, Wu S H, et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. J. Nucl. Mater., 2022, 561: 153564
doi: 10.1016/j.jnucmat.2022.153564
|
25 |
Négyesi M, Burda J, Bláhová O, et al. The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding[J]. J. Nucl. Mater., 2011, 416: 288
doi: 10.1016/j.jnucmat.2011.06.013
|
26 |
Li C B, Song Q, Yang X W, et al. Experimental investigation of the phase relations in the Fe-Zr-Y ternary system[J]. Materials, 2022, 15: 593
doi: 10.3390/ma15020593
|
27 |
Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations[J]. Comput. Mater. Sci., 2015, 98: 112
doi: 10.1016/j.commatsci.2014.10.052
|
28 |
Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials[J]. J. Nucl. Mater., 2014, 452: 285
doi: 10.1016/j.jnucmat.2014.05.023
|
29 |
Hou X M, Chou K C. Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. J. Alloys. Compd., 2011, 509: 2395
doi: 10.1016/j.jallcom.2010.11.028
|
30 |
Nagase F, Otomo T, Uetsuka H. Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1,573 K[J]. J. Nucl. Sci. Technol., 2003, 40: 213
doi: 10.1080/18811248.2003.9715351
|
31 |
Yan Y, Garrison B E, Smith T S, et al. Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based E110 alloy cladding tubes[J]. MRS Adv., 2017, 2: 1203
doi: 10.1557/adv.2016.641
|
32 |
Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O[J]. J. Am. Ceram. Soc., 1977, 60: 341
doi: 10.1111/jace.1977.60.issue-7-8
|
33 |
Yao M Y, Luan B F. Zirconium alloys used in water-cooled reactors[A]. Nuclear Reactor Materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 524
|
33 |
姚美意, 栾佰峰. 水冷核反应堆用锆合金[A]. 核反应堆材料[M].上海: 上海交通大学出版社, 2021: 524
|
34 |
Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Adv. Eng. Sci., 2021, 53(6): 204
|
34 |
马明星, 朱达川, 王志新 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204
|
35 |
Uetsuka H, Furuta T, Kawasaki S. Embrittlement of Zircaloy-4 due to oxidation in environment of stagnant steam[J]. J. Nucl. Sci. Technol., 1982, 19: 158
doi: 10.1080/18811248.1982.9734128
|
36 |
Zha X P. Oxidation behavior and mechanical properties of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloy under simulated loss of coolant accident conditions[D]. Shanghai: Shanghai University, 2022: 61
|
36 |
查学鹏. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在模拟失水事故下的氧化行为和力学性能研究[D]. 上海: 上海大学, 2022: 61
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|