Please wait a minute...
金属学报  2024, Vol. 60 Issue (5): 670-680    DOI: 10.11900/0412.1961.2022.00632
  研究论文 本期目录 | 过刊浏览 |
Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为
王金鑫1, 姚美意1(), 林雨晨1, 陈刘涛2, 高长源2, 徐诗彤1, 胡丽娟1, 谢耀平1, 周邦新1
1 上海大学 材料研究所 上海 200072
2 中广核研究院有限公司 深圳 518031
High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition
WANG Jinxin1, YAO Meiyi1(), LIN Yuchen1, CHEN Liutao2, GAO Changyuan2, XU Shitong1, HU Lijuan1, XIE Yaoping1, ZHOU Bangxin1
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518031, China
引用本文:

王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
Jinxin WANG, Meiyi YAO, Yuchen LIN, Liutao CHEN, Changyuan GAO, Shitong XU, Lijuan HU, Yaoping XIE, Bangxin ZHOU. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. Acta Metall Sin, 2024, 60(5): 670-680.

全文: PDF(4313 KB)   HTML
摘要: 

为探究Fe对核燃料包壳锆合金抗高温蒸汽氧化性能的影响,利用配置蒸汽发生器的同步热分析仪模拟失水事故(LOCA)下的高温蒸汽氧化环境,对Zr-1Nb-xFe (x = 0、0.05、0.2、0.4,质量分数,%)合金进行了800~1200℃下恒温3600 s的高温蒸汽氧化行为研究。采用金相显微镜、Vickers硬度仪观察分析了氧化前后样品横截面的显微组织和硬度。结果表明,在800~1100℃蒸汽中氧化时,添加Fe使Zr-1Nb合金的抗高温蒸汽氧化性能变差,且影响复杂,不随Fe含量的增加呈单一变化规律;在1200℃蒸汽中氧化时,添加Fe对Zr-1Nb合金的抗高温蒸汽氧化性能影响甚微;随氧化温度升高,4种合金的氧化动力学规律发生变化,总体由抛物线→直线规律转变,还会发生多次转折,这与锆合金基体的αβ和氧化膜的单斜(m)↔四方(t)相变过程密切相关。

关键词 锆合金失水事故高温蒸汽氧化显微组织相变    
Abstract

Zirconium alloys are widely used as fuel cladding materials in water-cooled nuclear reactors due to their properties such as small thermal neutron absorption cross section, good corrosion resistance to high-temperature steam and high-pressure water, excellent mechanical properties and good compatibility with UO2. However, under loss of coolant accident (LOCA) conditions, zirconium alloy undergoes high-temperature steam oxidation and loses its structural integrity, threatening nuclear reactor safety. With the development of the nuclear power industry, increasing demands are put forward for zirconium alloys to withstand higher burnup; hence, studying their behavior under high-temperature steam oxidation during simulated LOCA is crucial. Fe is a significant alloying element in zirconium alloys, and its addition can improve their properties. Zr-1Nb alloy is a commercial alloy with excellent corrosion resistance, and adding an appropriate amount of Fe (0.1%-0.4%; mass fraction) can further enhance the corrosion resistance of the Zr-1Nb alloy under normal operating conditions. However, the effect of adding Fe on the high-temperature steam oxidation behavior of the Zr-1Nb alloy is unclear. Therefore, the oxidation behavior of Zr-1Nb-xFe (x = 0, 0.05, 0.2, and 0.4; mass fraction, %) alloys were investigated in steam at 800, 900, 1000, 1100, and 1200oC for 3600 s using a simultaneous thermal analyzer with a steam generator. The microstructure and microhardness of the samples before and after oxidation were analyzed using a metallographic microscope and Vickers hardness tester. The results revealed that adding Fe generally reduced the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys from 800oC to 1100oC for 3600 s. The effect of Fe contents on the oxidation behavior of the Zr-1Nb alloy was complex and did not show a consistent change with increasing Fe content. When oxidized at 1200oC for 3600 s, the difference in Fe content had hardly any effect on the high-temperature steam oxidation resistance of Zr-1Nb-xFe alloys. As the oxidation temperature increased, the oxidation kinetics of the four alloys generally changed from a parabolic to a linear pattern, even occurring to multiple transitions, which was closely related to the change process of the αβ phase for the zirconium matrix and the monoclinic (m) ↔ tetragonal (t) phase for ZrO2.

Key wordszirconium alloy    loss of coolant accident (LOCA)    high-temperature steam oxidation    microstructure    phase transition
收稿日期: 2022-12-18     
ZTFLH:  TL341  
基金资助:国家自然科学基金项目(51871141)
通讯作者: 姚美意,yaomeiyi@shu.edu.cn,主要从事核燃料包壳材料锆合金和容错燃料(ATF)包壳材料的研究
Corresponding author: YAO Meiyi, professor, Tel: 13818897458, E-mail: yaomeiyi@shu.edu.cn
作者简介: 王金鑫,男,2000年生,硕士
AlloyNbFeZr
0Fe0.940-Bal.
0.05Fe0.9380.079Bal.
0.2Fe0.9470.256Bal.
0.4Fe0.9520.420Bal.
表1  Zr-1Nb-xFe合金成分 (mass fraction / %)
图1  4种合金在800~1200℃的高温蒸汽条件下恒温3600 s的氧化动力学曲线
T / oCAlloyTransition point / slnKnn
8000Fe-0.320.56
0.05Fe--0.800.72
0.2Fe-0.340.58
0.4Fe-0.330.58
9000Fe-1.220.52
0.05Fe-1.290.53
0.2Fe-1.140.53
0.4Fe-0.700.60
10000Fe-1.600.56
0.05Fe679-0.020.78
0.011.08
12670.110.61
0.2Fe-0.960.67
0.4Fe-1.600.56
11000Fe-0.080.88
0.05Fe--0.590.98
0.2Fe-1.490.72
0.4Fe1533-0.090.96
-0.020.61
12000Fe18770.470.93
-0.010.61
0.05Fe19830.470.93
0.010.60
0.2Fe20750.490.93
0.070.60
0.4Fe23480.560.92
0.020.58
表2  4种合金在800~1200℃的高温蒸汽中恒温3600 s的氧化动力学参数
T / oCF0.05F0.2F0.4
80022.3020.4519.11
90019.094.0610.44
100024.7122.050.31
110019.4510.739.03
1200-1.52-2.36-1.00
表3  与0Fe合金相比,0.05Fe、0.2Fe和0.4Fe合金在800~1200℃蒸汽中恒温3600 s的增重变化百分比 (%)
图2  0Fe、0.05Fe、0.2Fe和0.4Fe合金在800℃高温蒸汽中恒温3600 s后横截面的OM像
图3  0Fe、0.05Fe、0.2Fe和0.4Fe合金在900℃高温蒸汽中恒温3600 s后横截面的OM像
图4  0Fe、0.05Fe、0.2Fe和0.4Fe合金在1000、1100和1200℃高温蒸汽中恒温3600 s后横截面的OM像
图5  4种合金在800~1200℃蒸汽中恒温3600 s后横截面各部分厚度占比
T / oCAlloyα-Zr(O)Prior-β
8000Fe149-
0.05Fe146-
0.2Fe156-
0.4Fe200-
9000Fe223-
0.05Fe324166
0.2Fe241170
0.4Fe342203
10000Fe407306
0.05Fe478387
0.2Fe380308
0.4Fe424368
11000Fe-486
0.05Fe-341
0.2Fe-400
0.4Fe-462
12000Fe853-
0.05Fe943-
0.2Fe613-
0.4Fe694-
表4  4种合金在800~1200℃蒸汽中恒温3600 s后横截面不同组织层的Vickers硬度 (HV)
1 Jia Y J, Lin X H, Zou X W, et al. Research & development history, status and prospect of zirconium alloys[J]. Mater. China, 2022, 41: 354
1 贾豫婕, 林希衡, 邹小伟 等. 锆合金的研发历史、现状及发展趋势[J]. 中国材料进展, 2022, 41: 354
2 Liu J Z. Nuclear Structural Materials[M]. Beijing: Chemical Industry Press, 2007: 5
2 刘建章. 核结构材料[M]. 北京: 化学工业出版社, 2007: 5
3 Wang R S, Geng J Q, Weng L K, et al. Zirconium alloy cladding be-haviors under LOCA condition[J]. Mater. Rev., 2011, 25(suppl.2) :501
3 王荣山, 耿建桥, 翁立奎 等. LOCA工况下锆合金包壳的行为概述[J]. 材料导报, 2011, 25(): 501
4 Kim J H, Lee M H, Choi B K, et al. Embrittlement behavior of zircaloy-4 cladding during oxidation and water quench[J]. Nucl. Eng. Des., 2005, 235: 67
doi: 10.1016/j.nucengdes.2004.08.030
5 Gao Y, Yang M X, Hu Y, et al. Effect of cooling rate on residual plasticity of homemade ZIRLO alloy after LOCA[J]. Atomic. Energy Sci. Technol., 2019, 53: 1310
5 高 阳, 杨明馨, 胡 勇 等. 冷却速率对国产ZIRLO合金LOCA后残余塑性的影响[J]. 原子能科学技术, 2019, 53: 1310
6 Grosse M, Stuckert J, Steinbrück M, et al. Secondary hydriding during LOCA—Results from the QUENCH-L0 test[J]. J. Nucl. Mater., 2012, 420: 575
doi: 10.1016/j.jnucmat.2011.11.045
7 Shishov V N. The evolution of microstructure and deformation stability in Zr-Nb-(Sn,Fe) alloys under neutron irradiation[J]. J. ASTM Int., 2010, 7: 1
8 Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys[J]. Acta. Metall Sin., 2011, 47: 1216
doi: 10.3724/SP.J.1037.2011.00211
8 邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为[J]. 金属学报2011, 47: 1216
9 Gao W, Zhang X, Wang Z P, et al. Study of oxidation behavior of M5 and ZIRLO zirconium alloy in high temperature vapor[J]. J. Xi'an Technol. Univ., 2016, 36: 473
9 高 巍, 张 娴, 王正品 等. M5和ZIRLO合金高温水蒸气氧化行为研究[J]. 西安工业大学学报, 2016, 36: 473
10 Huang W. Conventional corrosion behavior and high temperature steam oxidation behavior under simulated LOCA for Zr-1Nb-xM alloys[D]. Shanghai: Shanghai University, 2020
10 黄 微. Zr-1Nb-xM合金的常规腐蚀行为及模拟LOCA下的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2020
11 Baek J H, Park K B, Jeong Y H. Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200oC[J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
12 Liu Y Z, Qiu J, Liu X, et al. Oxidation kinetics of N18 zirconium alloy at temperatures of 600-1200oC in steam[J]. Nucl. Power Eng., 2010, 31(2): 85
12 刘彦章, 邱 军, 刘 欣 等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程, 2010, 31(2): 85
13 Ma S C, Sun Y Z, Chen W C, et al. Study of fuel cladding-steam reaction under a loss of coolant-accident (LOCA)[J]. Atomic Energy Sci Technol., 1993, 27: 376
13 马树春, 孙源珍, 陈望春 等. PWR失水事故工况下燃料包壳与水蒸汽反应研究[J]. 原子能科学技术, 1993, 27: 376
14 Zhang J N, Yao M Y, Zha X P, et al. Effect of Nb addition on high temperature steam oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy[J]. Rare Met. Mater. Eng., 2022, 51: 1837
14 张佳楠, 姚美意, 查学鹏 等. 添加Nb对Zr-0.75Sn-0.35Fe-0.15Cr合金高温蒸汽氧化行为的影响[J]. 稀有金属材料与工程, 2022, 51: 1837
15 Qu C. Oxidation behavior of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloys in high-temperature steam[D]. Shanghai: Shanghai University, 2019
15 瞿 忱. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金的高温蒸汽氧化行为研究[D]. 上海: 上海大学, 2019
16 Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al. Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties[A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2011: 1
17 Kim H G, Park J Y, Jeong Y H. Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
doi: 10.1016/j.jnucmat.2005.04.061
18 Wang R S, Weng L K, Zhang Y W, et al. Development of research on corrosion resistance of Zr-Nb alloy[J]. Mater. Rep., 2011, 25(13): 10
18 王荣山, 翁立奎, 张晏玮 等. Zr-Nb合金耐腐蚀性能的研究进展[J]. 材料导报, 2011, 25(13): 105
19 Toffolon-Masclet C, Barbéris P, Brachet J C, et al. Study of Nb and Fe precipitation in α-phase temperature range (400 to 500℃) in Zr-Nb-(Fe-Sn) alloys[A]. Zirconium in the Nuclear Industry: 14th International Symposium[C]. Stockholm, Sweden: American Society for Testing and Materials, 2005: 1
20 Wang R S, Weng L K, Zhang Y W, et al. Effect of Fe on the precipitate characteristics and out-of-pile corrosion behavior of Zr-1Nb-xFe alloys[J]. Mater. Sci. Forum, 2013, 743-744: 1
doi: 10.4028/www.scientific.net/MSF
21 Broy Y, Garzarolli F, Seibold A, et al. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs[A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 2000: 609
22 Garzarolli F, Broy Y, Busch R A. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests[A]. Zirconium in the nuclear industry: 11th International Symposium[C]. West Conshohocken: American Society for Testing and Materials, 1996: 850
23 Li M S. High Temperature Corrosion of Metals[M]. Beijing: Metallurgical Industry Press, 2001: 36
23 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 36
24 Wang D, Zhang Y P, Wu S H, et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. J. Nucl. Mater., 2022, 561: 153564
doi: 10.1016/j.jnucmat.2022.153564
25 Négyesi M, Burda J, Bláhová O, et al. The influence of hydrogen on oxygen distribution inside Zry-4 fuel cladding[J]. J. Nucl. Mater., 2011, 416: 288
doi: 10.1016/j.jnucmat.2011.06.013
26 Li C B, Song Q, Yang X W, et al. Experimental investigation of the phase relations in the Fe-Zr-Y ternary system[J]. Materials, 2022, 15: 593
doi: 10.3390/ma15020593
27 Chiang T W, Chernatynskiy A, Noordhoek M J, et al. Anisotropy in oxidation of zirconium surfaces from density functional theory calculations[J]. Comput. Mater. Sci., 2015, 98: 112
doi: 10.1016/j.commatsci.2014.10.052
28 Noordhoek M J, Liang T, Chiang T W, et al. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials[J]. J. Nucl. Mater., 2014, 452: 285
doi: 10.1016/j.jnucmat.2014.05.023
29 Hou X M, Chou K C. Investigation of the effects of temperature and oxygen partial pressure on oxidation of zirconium carbide using different kinetics models[J]. J. Alloys. Compd., 2011, 509: 2395
doi: 10.1016/j.jallcom.2010.11.028
30 Nagase F, Otomo T, Uetsuka H. Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1,573 K[J]. J. Nucl. Sci. Technol., 2003, 40: 213
doi: 10.1080/18811248.2003.9715351
31 Yan Y, Garrison B E, Smith T S, et al. Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based E110 alloy cladding tubes[J]. MRS Adv., 2017, 2: 1203
doi: 10.1557/adv.2016.641
32 Ackermann O R J, Garg S P, Rauh E G. High-temperature phase diagram for the system Zr-O[J]. J. Am. Ceram. Soc., 1977, 60: 341
doi: 10.1111/jace.1977.60.issue-7-8
33 Yao M Y, Luan B F. Zirconium alloys used in water-cooled reactors[A]. Nuclear Reactor Materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 524
33 姚美意, 栾佰峰. 水冷核反应堆用锆合金[A]. 核反应堆材料[M].上海: 上海交通大学出版社, 2021: 524
34 Ma M X, Zhu D C, Wang Z X, et al. Effect of Zr addition on microstructure and wear properties of CoCrCuFeMn high-entropy alloy[J]. Adv. Eng. Sci., 2021, 53(6): 204
34 马明星, 朱达川, 王志新 等. Zr元素对CoCrCuFeMn高熵合金组织及耐磨性能的影响[J]. 工程科学与技术, 2021, 53(6): 204
35 Uetsuka H, Furuta T, Kawasaki S. Embrittlement of Zircaloy-4 due to oxidation in environment of stagnant steam[J]. J. Nucl. Sci. Technol., 1982, 19: 158
doi: 10.1080/18811248.1982.9734128
36 Zha X P. Oxidation behavior and mechanical properties of Zr-0.75Sn-0.35Fe-0.15Cr-xNb alloy under simulated loss of coolant accident conditions[D]. Shanghai: Shanghai University, 2022: 61
36 查学鹏. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在模拟失水事故下的氧化行为和力学性能研究[D]. 上海: 上海大学, 2022: 61
[1] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[2] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[3] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[4] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[5] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[6] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[7] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[8] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[9] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[10] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.