Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 129-142    DOI: 10.11900/0412.1961.2023.00241
  综述 本期目录 | 过刊浏览 |
Zr镁合金晶粒细化机理与研究进展
刘勇(), 曾刚, 刘洪, 王煜, 李建龙
南昌大学 先进制造学院 江西省轻质高强结构材料重点实验室 南昌 330031
Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr
LIU Yong(), ZENG Gang, LIU Hong, WANG Yu, LI Jianlong
Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
引用本文:

刘勇, 曾刚, 刘洪, 王煜, 李建龙. 含Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
Yong LIU, Gang ZENG, Hong LIU, Yu WANG, Jianlong LI. Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr[J]. Acta Metall Sin, 2024, 60(2): 129-142.

全文: PDF(2078 KB)   HTML
摘要: 

细晶强化是镁合金的主要强化方式。Zr是镁合金(不含Al、Si等元素)最有效的晶粒细化剂,通常以Mg-Zr中间合金的形式加入。如何调控Zr元素在Mg-Zr中间合金中的存在形态(颗粒Zr与溶质Zr)是实现含Zr镁合金晶粒有效细化的关键。本文综述了镁合金晶粒细化的理论研究,基于生长抑制理论与异质形核理论,探讨了溶质Zr与颗粒Zr细化镁合金的机理,指出了含Zr镁合金晶粒细化的工程应用瓶颈。从颗粒Zr与溶质Zr 2方面综述了镁合金晶粒细化的研究进展,提出了Zr细化镁合金晶粒的协同设计策略。最后,对Zr细化镁合金晶粒的发展趋势进行了展望。

关键词 镁合金晶粒细化生长抑制异质形核Mg-Zr中间合金    
Abstract

Grain refinement stands out as the primary strengthening mechanism in magnesium alloys. Zr emerges as the most effective grain refiner for magnesium alloys in the absence of Al, Si, etc. Typically, Zr is introduced in the form of an Mg-Zr master alloy. The crucial factor for achieving effective grain refinement in magnesium alloys incorporating Zr lies in regulating the morphology of Zr elements in the Mg-Zr master alloy, distinguishing between particle Zr and solute Zr. This study presents the theoretical groundwork for grain refinement. Drawing upon the growth restriction theory and heterogeneous nucleation theory, the refinement mechanism of soluble Zr and particle Zr on magnesium alloys is discussed. The discussion also identifies the engineering application bottleneck associated with Zr-refined magnesium alloys. A comprehensive review of advancements in Zr-refined magnesium alloy research is conducted, encompassing particle Zr and solute Zr. This review highlights the synergistic design strategy proposed for Zr-refined magnesium alloys. Ultimately, the anticipated development trends for Zr-refined magnesium alloys is prospected.

Key wordsmagnesium alloy    grain refinement    growth restriction    heterogeneous nucleation    Mg-Zr master alloy
收稿日期: 2023-06-02     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2021YFB3501001);国家自然科学基金项目(52061028);江西省重大研发专项项目(20223BBE51021)
通讯作者: 刘 勇,liuyong@ncu.edu.cn,主要从事高性能镁合金成形研究
Corresponding author: LIU Yong, professor, Tel: 13576087535, E-mail: liuyong@ncu.edu.cn
作者简介: 刘 勇,男,1980年生,教授,博士
ElementQElementQ
Fe52.56[45]Nd3.557[25]
Zr38.29[45]Sm2.943[25]
Ca11.94[45]Pr2.909[25]
Si9.25[45]La2.895[25]
Ni6.13[45]Tb2.073[25]
Zn5.31[45]Eu2.490[25]
Cu5.28[45]Gd1.025[25]
Ge4.41[45]Ho0.860[25]
Al4.32[45]Dy0.828[25]
Sb0.53[45]Tm0.557[25]
Mn0.15[45]Er0.524[25]
Sr3.51[58]Lu0.123[46]
Ce2.74[58]Na6.878[46]
Sc3.96[58]Pd4.070[46]
Yb2.53[58]Co3.178[46]
Y1.70[58]Ag2.675[46]
Sn1.47[58]Cd2.644[46]
Pb1.03[58]Li2.034[46]
表1  镁合金中常用溶质元素的生长限制因子(Q)[25,45,46,58]
图1  重熔后镁合金中溶质Zr含量对晶粒尺寸的影响[73]
图2  Zr颗粒尺寸与镁合金临界形核过冷度的关系[79]及镁合金中Zr形核核心尺寸分布[71,79]
图3  镁合金Zr细化晶粒协同策略
图4  工业上应用Mg-Zr中间合金的显微组织及Zr颗粒尺寸分布
图5  在780℃下沉降和再次搅拌对Zr细化镁合金晶粒尺寸的影响[79]
图6  镁合金熔体Zr颗粒尺寸与沉降距离的关系
图7  不同Mg-Zr中间合金的组织形貌及使用不同中间合金细化的Mg-10Gd-3Y-0.5Zr合金晶粒尺寸[71](a) extruded rod-EX1 A (ED—extrusion direction)(b) extruded sheet-EX2 A(c) rolled sheet-RL7.5-0.5 A (RD—rolling direction)

Treatment

Process

Alloy

Casting conditionHolding time / minAverage grain size / μm

Improvement

rate / %

Ref.

UntreatedTreated
Mg-Zr refinerUHFP-TIGRMg-9Gd-3Y-0.5ZrSteel ladle5924254[80]
treatedRollingMg-10Gd-3Y-0.5ZrSteel ladle15866030[71]
RollingMg-0.5ZrSteel ladle3016214510[84]
FSPMg-3Nd-0.2Zn-0.6ZrSteel ladle1514011121[86]
ECAEMg-2Zn-0.1ZrMetallic mold-13111016[87]
Mg alloy meltIMSMg-0.1Zr-30321*12760[90]
treatedUSTMg-1.0Zr--2949465[93]
PMFMg-Gd-Y-ZrGraphite crucible-653743[96]
PECMg-10Gd-3YSand cast-1158923[82]
表2  不同处理工艺下镁合金细化效果对比[71,80,82,84,86,87,90,93,96]
1 Li G, Qu W Y, Luo M, et al. Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3255
doi: 10.1016/S1003-6326(21)65729-1
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
doi: 10.1016/j.jma.2019.08.001
3 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716 pmid: 29371467
4 Zhang Y, Rong W, Wu Y J, et al. A comparative study of the role of Ag in microstructures and mechanical properties of Mg-Gd and Mg-Y alloys [J]. Mater. Sci. Eng., 2018, A731: 609
5 Wang L S, Jiang J H, Saleh B, et al. Controlling corrosion resistance of a biodegradable Mg-Y-Zn alloy with LPSO phases via multi-pass ECAP process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1180
doi: 10.1007/s40195-020-01042-y
6 Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
6 曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
7 Xiong J P, Liu Y. Research progress in interfacial regulation of magnesium matrix composites [J]. J. Mater. Eng., 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
7 熊京鹏, 刘 勇. 镁基复合材料界面调控研究进展 [J]. 材料工程, 2023, 51(1): 1
doi: 10.11868/j.issn.1001-4381.2021.001213
8 Zhou M H, Xu Y H, Liu Y, et al. Microstructures and mechanical properties of Mg-15Gd-1Zn-0.4 Zr alloys treated by ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2021, A828: 141881
9 Cheng Y F, Du W B, Liu K, et al. Mechanical properties and corrosion behaviors of Mg-4Zn-0.2Mn-0.2Ca alloy after long term in vitro degradation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 363
doi: 10.1016/S1003-6326(20)65218-9
10 Yan C J, Guan B, Xin Y C, et al. Mechanical and corrosion behavior of a biomedical Mg-6Zn-0.5Zr alloy containing a large number of twins [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 439
doi: 10.1007/s40195-022-01480-w
11 Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
11 沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
12 Liang J W, Lei Z L, Chen Y B, et al. Formability, microstructure, and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2022, A839: 142858
13 Wang T, Yang L, Tang Z F, et al. Microstructure, mechanical properties and deformation mechanism of powder metallurgy AZ31 magnesium alloy during rolling [J]. Mater. Sci. Eng., 2022, A844: 143042
14 Zhou B J, Li Y J, Wang L Y, et al. The role of grain boundary plane in slip transfer during deformation of magnesium alloys [J]. Acta Mater., 2022, 227: 117662
doi: 10.1016/j.actamat.2022.117662
15 Tian J, Deng J F, Chang Y Y, et al. A study of unstable fracture of a magnesium alloy caused by uneven microstructure [J]. Mater. Lett., 2022, 314: 131799
doi: 10.1016/j.matlet.2022.131799
16 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
17 Easton M, Stjohn D. An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles [J]. Metall. Mater. Trans., 2005, 36A: 1911
18 StJohn D H, Cao P, Qian M, et al. A new analytical approach to reveal the mechanisms of grain refinement [J]. Adv. Eng. Mater., 2007, 9: 739
doi: 10.1002/adem.v9:9
19 Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3A1-1Zn [J]. Scr. Mater., 2004, 51: 19
doi: 10.1016/j.scriptamat.2004.03.023
20 Patel V, Li W Y, Andersson J, et al. Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing [J]. J. Mater. Res. Technol., 2022, 17: 3150
doi: 10.1016/j.jmrt.2022.02.059
21 Golrang M, Mobasheri M, Mirzadeh H, et al. Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy [J]. J. Alloys Compd., 2020, 815: 152380
doi: 10.1016/j.jallcom.2019.152380
22 Liu X, Yin S Q, Zhang Z Q, et al. Effect of limestone ores on grain refinement of as-cast commercial AZ31 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1103
doi: 10.1016/S1003-6326(18)64746-6
23 Zhu S Q, Ringer S P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys [J]. Acta Mater., 2018, 144: 365
doi: 10.1016/j.actamat.2017.11.004
24 Robson J D, Paa-Rai C. The interaction of grain refinement and ageing in magnesium-zinc-zirconium (ZK) alloys [J]. Acta Mater., 2015, 95: 10
doi: 10.1016/j.actamat.2015.05.012
25 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
25 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
26 Li L H, Liu W H, Qi F G, et al. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review [J]. J. Magnes. Alloy., 2022, 10: 2334
27 Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloy., 2022, 10: 1191
28 Wang Z Y, Chen X H, Shu Y K, et al. Microstructure, texture, and mechanical properties of Mg-Zn-Y-Nd-Zr alloys [J]. Rare Met. Mater. Eng., 2022, 51: 3138
28 王子怡, 陈先华, 舒彦凯 等. Mg-Zn-Y-Nd-Zr合金的显微组织、织构、力学性能(英文) [J]. 稀有金属材料与工程, 2022, 51: 3138
29 Shi Q Y, Natarajan A R, Van der Ven A, et al. Partitioning of Ca to metastable precipitates in a Mg-rare earth alloy [J]. Mater. Res. Lett., 2023, 11: 222
doi: 10.1080/21663831.2022.2138724
30 Peng X, Liu W C, Wu G H, et al. Plastic deformation and heat treatment of Mg-Li alloys: A review [J]. J. Mater. Sci. Technol., 2022, 99: 193
doi: 10.1016/j.jmst.2021.04.072
31 Johnsson M, Bäckerud L. The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys [J]. Int. J. Mater. Res., 1996, 87: 216
doi: 10.1515/ijmr-1996-870312
32 Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
doi: 10.1016/j.matdes.2015.08.026
33 Li J L, Chen R S, Ma Y Q, et al. Hot tearing of sand cast Mg-5wt.% Y-4wt.% RE (WE54) alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 728
doi: 10.1007/s40195-013-0230-9
34 Srinivasan A, Wang Z, Huang Y D, et al. Hot tearing characteristics of binary Mg-Gd alloy castings [J]. Metall. Mater. Trans., 2013, 44A: 2285
35 Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
doi: 10.1016/j.matlet.2018.07.037
36 Rathi S K, Sharma A, Di Sabatino M. Effect of mould temperature, grain refinement and modification on hot tearing test in Al-7Si-3Cu alloy [J]. Eng. Fail. Anal., 2017, 79: 592
doi: 10.1016/j.engfailanal.2017.04.037
37 Easton M, Grandfield J F, StJohn D H, et al. The effect of grain refinement and cooling rate on the hot tearing of wrought aluminium alloys [J]. Mater. Sci. Forum, 2006, 519-521: 1675
doi: 10.4028/www.scientific.net/MSF.519-521
38 Uludağ M, Çetin R, Dispinar D, et al. The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy [J]. Eng. Fail. Anal., 2018, 90: 90
doi: 10.1016/j.engfailanal.2018.03.025
39 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
40 Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
doi: 10.1016/S1003-6326(14)63142-3
41 Davis T A, Bichler L, D'Elia F, et al. Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy [J]. J. Alloys Compd., 2018, 759: 70
doi: 10.1016/j.jallcom.2018.05.129
42 Xing F J, Guo F, Su J, et al. The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism [J]. Mater. Res. Express, 2021, 8: 066516
43 Wu G H, Sun M, Dai J C, et al. Study on the grain refinement behavior of Mg-Zr master alloy and Zr containing compounds in Mg-10Gd-3Y magnesium alloy [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 181
44 StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
45 StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
46 Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
doi: 10.1016/j.jallcom.2014.09.061
47 Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
doi: 10.1016/j.scriptamat.2005.11.002
48 Sun M, StJohn D H, Easton M A, et al. Effect of cooling rate on the grain refinement of Mg-Y-Zr alloys [J]. Metall. Mater. Trans., 2020, 51A: 482
49 Balasubramani N, Wang G, Easton M A, et al. A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys [J]. J. Magnes. Alloy., 2021, 9: 829
50 Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
51 Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Mater. Trans., 1993, 24A: 481
52 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
doi: 10.1016/S1359-6454(00)00094-X
53 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
doi: 10.1016/j.actamat.2011.04.035
54 Zhang M X, Kelly P M, Qian M, et al. Crystallography of grain refinement in Mg-Al based alloys [J]. Acta Mater., 2005, 53: 3261
doi: 10.1016/j.actamat.2005.03.030
55 Qiu D, Zhang M X, Fu H M, et al. Crystallography of recently developed grain refiners for Mg-Al alloys [J]. Philos. Mag. Lett., 2007, 87: 505
doi: 10.1080/09500830701253151
56 Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
doi: 10.1016/j.actamat.2009.03.011
57 Fu H M, Zhang M X, Qiu D, et al. Grain refinement by AlN particles in Mg-Al based alloys [J]. J. Alloys Compd., 2009, 478: 809
doi: 10.1016/j.jallcom.2008.12.029
58 Lee Y C, Dahle A K, StJohn D H. The role of solute in grain refinement of magnesium [J]. Metall. Mater. Trans., 2000, 31A: 2895
59 Easton M, StJohn D. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—A review of the literature [J]. Metall. Mater. Trans., 1999, 30A: 1613
60 Men H, Fan Z. Effects of solute content on grain refinement in an isothermal melt [J]. Acta Mater., 2011, 59: 2704
doi: 10.1016/j.actamat.2011.01.008
61 Schmid-Fetzer R, Kozlov A. Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification [J]. Acta Mater., 2011, 59: 6133
doi: 10.1016/j.actamat.2011.06.026
62 Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
63 Günther R, Hartig C, Bormann R. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment [J]. Acta Mater., 2006, 54: 5591
doi: 10.1016/j.actamat.2006.07.035
64 Li Y J, Tang A T. Recent development of grain refining technologies for magnesium alloys [J]. Mater. Rev., 2013, 27(17): 125
64 李玉娟, 汤爱涛. 镁合金晶粒细化的研究进展 [J]. 材料导报, 2013, 27(17): 125
65 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
doi: 10.1007/BF02642799
66 Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
doi: 10.1021/ie50510a031
67 Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
doi: 10.1016/S0167-577X(02)00417-2
68 Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
doi: 10.1016/j.scriptamat.2005.05.008
69 Saunders W P, Strieter F P. Alloying zirconium to magnesium [J]. Trans. Am. Foundrymen's Soc., 1952, 60: 581
70 Qian M, StJohn D H, Frost M T. Characteristic zirconium-rich coring structures in Mg-Zr alloys [J]. Scr. Mater., 2002, 46: 649
doi: 10.1016/S1359-6462(02)00046-5
71 Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
71 孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
72 Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
doi: 10.4028/www.scientific.net/MSF.419-422
73 Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
74 Sun M, Easton M A, StJohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
doi: 10.1002/adem.v15.5
75 Qian M, StJohn D H, Frost M T. Heterogeneous nuclei size in magnesium-zirconium alloys [J]. Scr. Mater., 2004, 50: 1115
doi: 10.1016/j.scriptamat.2004.01.026
76 Liu T, Wang X G, Li W L, et al. Genetic effects of Mg-Zr master alloy in extruded thick sheets of ZK60 magnesium alloy [J]. Mater. Lett., 2023, 339: 134084
doi: 10.1016/j.matlet.2023.134084
77 Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
78 Tian Q. Grain refining mechanism and influencing factors of Mg-Re-Zr alloys [D]. Harbin:Harbin Institute of Technology, 2011
78 田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
79 Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
doi: 10.1016/j.actamat.2006.09.016
80 Tong X, Wu G H, Easton M A, et al. Exceptional grain refinement of Mg-Zr master alloy treated by tungsten inert gas arc re-melting with ultra-high frequency pulses [J]. Scr. Mater., 2022, 215: 114700
doi: 10.1016/j.scriptamat.2022.114700
81 Saha P, Viswanathan S. An analysis of the grain refinement of magnesium by zirconium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 175
82 Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
82 庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
83 Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
doi: 10.1016/S1471-5317(01)00009-8
84 Qian M, StJohn D, Frost M, et al. Grain refinement of pure magnesium using rolled Zirmax® master alloy (MG-33.3 ZR) [A]. Magnesium Technology 2003 [C]. Warrendale: TMS, 2003: 215
85 Vargas M, Lathabai S, Uggowitzer P J, et al. Microstructure, crystallographic texture and mechanical behaviour of friction stir processed Mg-Zn-Ca-Zr alloy ZKX50 [J]. Mater. Sci. Eng., 2017, A685: 253
86 Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
87 Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
88 Das S, Barekar N, El Fakir O, et al. Influence of intensive melt shearing on subsequent hot rolling and the mechanical properties of twin roll cast AZ31 strips [J]. Mater. Lett., 2015, 144: 54
doi: 10.1016/j.matlet.2015.01.017
89 Aarabi H, Alizadeh M. Improvement of microstructure and corrosion properties of AA7075 Al alloy by melt shearing process [J]. Mater. Lett., 2020, 275: 128085
doi: 10.1016/j.matlet.2020.128085
90 Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
doi: 10.1080/13640461.2017.1317393
91 Balasubramani N, StJohn D, Dargusch M, et al. Ultrasonic processing for structure refinement: An overview of mechanisms and application of the interdependence theory [J]. Materials, 2019, 12: 3187
doi: 10.3390/ma12193187
92 Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
93 Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo-and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
doi: 10.1016/j.jcrysgro.2019.02.004
94 Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
doi: 10.1016/j.jallcom.2016.07.280
95 Wang B, Yang Y S. Microstructure refinement of Mg-Gd-Y-Zr alloy under pulsed magnetic field [J]. J. Iron Steel Res. Int., 2012, 19(suppl.1) : 446
96 Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
96 汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
97 Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
97 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
doi: 10.11900/0412.1961.2017.00503
98 Jiang Y B, Tang G Y, Shek C, et al. Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment [J]. J. Alloys Compd., 2011, 509: 4308
doi: 10.1016/j.jallcom.2011.01.052
99 Wang G, Croaker P, Dargusch M, et al. Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy [J]. Comput. Mater. Sci., 2017, 134: 116
doi: 10.1016/j.commatsci.2017.03.041
100 Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
101 Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
101 胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
doi: 10.15980/j.tzzz.2018.07.006
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[11] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[15] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.