|
|
共晶高熵合金AlCoCrFeNi2.1 在H2SO4 溶液中的腐蚀行为 |
胡文滨, 张晓雯, 宋龙飞( ), 廖伯凯, 万闪, 康磊, 郭兴蓬( ) |
广州大学 化学化工学院 广州 510006 |
|
Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution |
HU Wenbin, ZHANG Xiaowen, SONG Longfei( ), LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng( ) |
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China |
引用本文:
胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1 在H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
Wenbin HU,
Xiaowen ZHANG,
Longfei SONG,
Bokai LIAO,
Shan WAN,
Lei KANG,
Xingpeng GUO.
Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. Acta Metall Sin, 2023, 59(12): 1644-1654.
1 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure[J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
1 |
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
2 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
3 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
|
4 |
Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
|
5 |
Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy[J]. J. Alloys Compd., 2022, 906: 163947
doi: 10.1016/j.jallcom.2022.163947
|
6 |
Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
|
7 |
Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corros. Sci., 2020, 163: 108287
doi: 10.1016/j.corsci.2019.108287
|
8 |
Shi Y Z, Yang B, Xie X, et al. Corrosion of Alx CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
|
9 |
Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654
doi: 10.1016/j.intermet.2019.106654
|
10 |
Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
doi: 10.1016/j.intermet.2010.10.008
|
11 |
Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
|
12 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
|
13 |
He F, Wang Z J, Ai C, et al. Grouping strategy in eutectic multi-principal-component alloy[J]. Mater. Chem. Phys., 2019, 221: 138
doi: 10.1016/j.matchemphys.2018.09.044
|
14 |
Peng P, Li S Y, Chen W Q, et al. Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Alloys Compd., 2022, 898: 162907
doi: 10.1016/j.jallcom.2021.162907
|
15 |
Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing[J]. Mater. Sci. Eng., 2022, A830: 142327
|
16 |
Sun Y P, Wang Z, Yang H J, et al. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J]. J. Alloys Compd., 2020, 842: 155825
doi: 10.1016/j.jallcom.2020.155825
|
17 |
Trueba M, Trasatti S P. Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
doi: 10.1016/j.matchemphys.2010.02.022
|
18 |
Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
|
19 |
Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
doi: 10.1016/j.corsci.2010.04.004
|
20 |
Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions[J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
|
21 |
Umoren S A, Li Y, Wang F H, et al. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions[J]. Corros. Sci., 2010, 52: 1777
doi: 10.1016/j.corsci.2010.01.026
|
22 |
Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Alx CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corros. Sci., 2008, 50: 2053
doi: 10.1016/j.corsci.2008.04.011
|
23 |
Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Alx CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corros. Sci., 2010, 52: 1026
doi: 10.1016/j.corsci.2009.11.028
|
24 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
|
25 |
BenSalah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis[J]. Corros. Sci., 2014, 86: 61
doi: 10.1016/j.corsci.2014.04.056
|
26 |
Mert B D, Yüce A O, Kardaş G, et al. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: Experimental and theoretical investigation[J]. Corros. Sci., 2014, 85: 287
doi: 10.1016/j.corsci.2014.04.032
|
27 |
Wang Z, Zhang G H, Fan X H, et al. Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions[J]. J. Alloys Compd., 2022, 900: 163432
doi: 10.1016/j.jallcom.2021.163432
|
28 |
Dai C D, Luo H, Li J, et al. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid[J]. Appl. Surf. Sci., 2020, 499: 143903
doi: 10.1016/j.apsusc.2019.143903
|
29 |
Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions[J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
|
30 |
Jiang R J, Chen C F, Zheng S Q. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films[J]. Electrochim. Acta, 2010, 55: 2498
doi: 10.1016/j.electacta.2009.11.093
|
31 |
Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution[J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
|
32 |
Kong D C, Xu A N, Dong C F, et al. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions[J]. Corros. Sci., 2017, 116: 34
doi: 10.1016/j.corsci.2016.12.010
|
33 |
Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS[J]. Corros. Sci., 2020, 167: 108507
doi: 10.1016/j.corsci.2020.108507
|
34 |
Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing temperature on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution[J]. Mater. Chem. Phys., 2022, 279: 125725
doi: 10.1016/j.matchemphys.2022.125725
|
35 |
Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Alx CoCrFeNi high entropy alloys[J]. Mater. Chem. Phys., 2021, 273: 124937
doi: 10.1016/j.matchemphys.2021.124937
|
36 |
Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy[J]. J. Electroanal. Chem., 2019, 848: 113331
doi: 10.1016/j.jelechem.2019.113331
|
37 |
Wang P J, Ma L W, Cheng Q X, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review[J]. Int. J. Miner., Metall. Mater., 2021, 28: 1112
|
38 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
39 |
Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content[J]. Corros. Sci., 2004, 46: 2681
doi: 10.1016/j.corsci.2004.03.013
|
40 |
Hsu K M, Chen S H, Lin C S. Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4 [J]. Corros. Sci., 2021, 190: 109694
doi: 10.1016/j.corsci.2021.109694
|
41 |
Qi W, Wang W R, Yang X, et al. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 76
doi: 10.1016/j.jmst.2021.08.062
|
42 |
Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
|
43 |
Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation[J]. Corros. Sci., 2015, 91: 232
doi: 10.1016/j.corsci.2014.11.018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|