Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1644-1654    DOI: 10.11900/0412.1961.2022.00237
  本期目录 | 过刊浏览 |
共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为
胡文滨, 张晓雯, 宋龙飞(), 廖伯凯, 万闪, 康磊, 郭兴蓬()
广州大学 化学化工学院 广州 510006
Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution
HU Wenbin, ZHANG Xiaowen, SONG Longfei(), LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng()
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
引用本文:

胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
Wenbin HU, Xiaowen ZHANG, Longfei SONG, Bokai LIAO, Shan WAN, Lei KANG, Xingpeng GUO. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. Acta Metall Sin, 2023, 59(12): 1644-1654.

全文: PDF(4440 KB)   HTML
摘要: 

利用电化学测试、SEM、EDS、XPS等方法研究了AlCoCrFeNi2.1共晶高熵合金(EHEA)在0.05 mol/L H2SO4溶液与0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的腐蚀行为。结果表明,AlCoCrFeNi2.1 EHEA在H2SO4溶液中的钝化行为与局部腐蚀受Cl-影响明显;Cl-不改变AlCoCrFeNi2.1 EHEA钝化膜的半导体类型,但对钝化膜的致密性影响明显;钝化膜中的Ni受Cl-影响较小,Cl-主要通过影响Al、Cr氧化物的含量进而改变钝化膜的性质;在0.05 mol/L H2SO4溶液中,AlCoCrFeNi2.1 EHEA的腐蚀为富Ni-Al相选择性溶解;在0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中,则为点蚀与选择性溶解。

关键词 共晶高熵合金局部腐蚀钝化    
Abstract

Several high-entropy alloys (HEAs), such as single-phase bcc HEA with high strength and fcc with high ductility have been developed over the past few decades. Eutectic HEA (EHEA), such as AlCoCrFeNi2.1, consists of both fcc and bcc microstructure, imparting excellent mechanical properties. The recent research on AlCoCrFeNi2.1 EHEA primarily focuses on its mechanical properties. However, corrosion resistance of AlCoCrFeNi2.1 EHEA is rarely discussed, which is crucial for the application of new materials. This work investigates the corrosion behavior of AlCoCrFeNi2.1 EHEA in 0.05 mol/L H2SO4 and 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solutions using electrochemical evaluation, SEM, EDS, and XPS. The results indicate that Cl- do not alter the semiconductor type of passive film on AlCoCrFeNi2.1 EHEA, but they considerably affect the compactness. Cl- change passive film properties by influencing the Al and Cr oxide contents; however, Ni is not affected by Cl-. The Ni-Al-rich phase is preferentially dissolved in 0.05 mol/L H2SO4 solution, and pitting corrosion and selective dissolution occur in 0.05 mol/L H2SO4 + 0.02 mol/L NaCl solution.

Key wordseutectic high-entropy alloy    localized corrosion    passivation
收稿日期: 2022-05-12     
ZTFLH:  TG178  
基金资助:广东省区域联合基金-青年基金项目(2021A1515110560)
通讯作者: 宋龙飞,songlongfei@gzhu.edu.cn,主要从事金属腐蚀与防护研究;
郭兴蓬,guoxingpeng@gzhu.edu.cn,主要从事金属腐蚀与防护研究
作者简介: 胡文滨,男,1999年生,硕士生
图1  AlCoCrFeNi2.1共晶高熵合金(EHEA)显微组织
图2  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的循环极化曲线
SolutionEcorr / mVicorr / (μA·cm-2)Eb / mVipass / (μA·cm-2)
0.05 mol·L-1 H2SO4-33959.0127784.990
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl-36067.3874715.048
表1  AlCoCrFeNi2.1 EHEA的电化学参数
图3  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的EIS
SolutionRs / (Ω·cm2)Qdl / (Ω-1·cm-2·s n )nRct / (Ω·cm2)L / (H·cm2)RL / (Ω·cm2)
0.05 mol·L-1 H2SO413.009.8442 × 10-50.8739308.5120.867.22
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl17.621.6432 × 10-40.8858271.318.037.70
表2  AlCoCrFeNi2.1 EHEA的EIS拟合参数
图4  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的恒电位极化曲线
图5  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的M-S曲线
SolutionE / VNA / (1022 cm-3)ND / (1021 cm-3)Efb / V
0.05 mol·L-1 H2SO40.11.88.6-0.53
0.21.56.9-0.65
0.05 mol·L-1 H2SO4 + 0.02 mol·L-1 NaCl0.11.410.0-0.50
0.21.17.4-0.77
表3  AlCoCrFeNi2.1 EHEA以不同电位恒电位极化2 h后的受主密度和施主密度
图6  AlCoCrFeNi2.1 EHEA浸泡在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液25 d后的SEM像
图7  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中浸泡25 d的EDS元素面分布
图8  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中恒电位0.2 V (vs SCE)极化2 h后的高分辨XPS图
图9  AlCoCrFeNi2.1 EHEA在0.05 mol/L H2SO4溶液和0.05 mol/L H2SO4 + 0.02 mol/L NaCl溶液中的局部腐蚀机理示意图
1 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure[J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
1 王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
2 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
3 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data[J]. Nature, 2015, 527: 441
doi: 10.1038/527441a
4 Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method[J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
5 Wang H, Liu P, Chen X H, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy[J]. J. Alloys Compd., 2022, 906: 163947
doi: 10.1016/j.jallcom.2022.163947
6 Xu Z L, Zhang H, Du X J, et al. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J]. Corros. Sci., 2020, 177: 108954
doi: 10.1016/j.corsci.2020.108954
7 Luo H, Zou S W, Chen Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corros. Sci., 2020, 163: 108287
doi: 10.1016/j.corsci.2019.108287
8 Shi Y Z, Yang B, Xie X, et al. Corrosion of Alx CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
9 Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654
doi: 10.1016/j.intermet.2019.106654
10 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy[J]. Intermetallics, 2011, 19: 288
doi: 10.1016/j.intermet.2010.10.008
11 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
doi: 10.1016/j.intermet.2017.09.001
12 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
doi: 10.1016/j.matdes.2018.01.025
13 He F, Wang Z J, Ai C, et al. Grouping strategy in eutectic multi-principal-component alloy[J]. Mater. Chem. Phys., 2019, 221: 138
doi: 10.1016/j.matchemphys.2018.09.044
14 Peng P, Li S Y, Chen W Q, et al. Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Alloys Compd., 2022, 898: 162907
doi: 10.1016/j.jallcom.2021.162907
15 Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing[J]. Mater. Sci. Eng., 2022, A830: 142327
16 Sun Y P, Wang Z, Yang H J, et al. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys[J]. J. Alloys Compd., 2020, 842: 155825
doi: 10.1016/j.jallcom.2020.155825
17 Trueba M, Trasatti S P. Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
doi: 10.1016/j.matchemphys.2010.02.022
18 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
19 Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corros. Sci., 2010, 52: 2571
doi: 10.1016/j.corsci.2010.04.004
20 Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions[J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
21 Umoren S A, Li Y, Wang F H, et al. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions[J]. Corros. Sci., 2010, 52: 1777
doi: 10.1016/j.corsci.2010.01.026
22 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Alx CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corros. Sci., 2008, 50: 2053
doi: 10.1016/j.corsci.2008.04.011
23 Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Alx CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corros. Sci., 2010, 52: 1026
doi: 10.1016/j.corsci.2009.11.028
24 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J]. Corros. Sci., 2018, 134: 131
doi: 10.1016/j.corsci.2018.02.031
25 BenSalah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis[J]. Corros. Sci., 2014, 86: 61
doi: 10.1016/j.corsci.2014.04.056
26 Mert B D, Yüce A O, Kardaş G, et al. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: Experimental and theoretical investigation[J]. Corros. Sci., 2014, 85: 287
doi: 10.1016/j.corsci.2014.04.032
27 Wang Z, Zhang G H, Fan X H, et al. Corrosion behavior and surface characterization of an equiatomic CoCrFeMoNi high-entropy alloy under various pH conditions[J]. J. Alloys Compd., 2022, 900: 163432
doi: 10.1016/j.jallcom.2021.163432
28 Dai C D, Luo H, Li J, et al. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid[J]. Appl. Surf. Sci., 2020, 499: 143903
doi: 10.1016/j.apsusc.2019.143903
29 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions[J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
30 Jiang R J, Chen C F, Zheng S Q. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films[J]. Electrochim. Acta, 2010, 55: 2498
doi: 10.1016/j.electacta.2009.11.093
31 Wei L, Liu Y, Li Q, et al. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5wt.%NaCl solution[J]. Corros. Sci., 2019, 146: 44
doi: 10.1016/j.corsci.2018.10.025
32 Kong D C, Xu A N, Dong C F, et al. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions[J]. Corros. Sci., 2017, 116: 34
doi: 10.1016/j.corsci.2016.12.010
33 Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS[J]. Corros. Sci., 2020, 167: 108507
doi: 10.1016/j.corsci.2020.108507
34 Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing temperature on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution[J]. Mater. Chem. Phys., 2022, 279: 125725
doi: 10.1016/j.matchemphys.2022.125725
35 Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Alx CoCrFeNi high entropy alloys[J]. Mater. Chem. Phys., 2021, 273: 124937
doi: 10.1016/j.matchemphys.2021.124937
36 Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy[J]. J. Electroanal. Chem., 2019, 848: 113331
doi: 10.1016/j.jelechem.2019.113331
37 Wang P J, Ma L W, Cheng Q X, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review[J]. Int. J. Miner., Metall. Mater., 2021, 28: 1112
38 Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
39 Moreno M, Morris W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content[J]. Corros. Sci., 2004, 46: 2681
doi: 10.1016/j.corsci.2004.03.013
40 Hsu K M, Chen S H, Lin C S. Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4 [J]. Corros. Sci., 2021, 190: 109694
doi: 10.1016/j.corsci.2021.109694
41 Qi W, Wang W R, Yang X, et al. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy[J]. J. Mater. Sci. Technol., 2022, 109: 76
doi: 10.1016/j.jmst.2021.08.062
42 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
43 Liu J, Zhang T, Meng G Z, et al. Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation[J]. Corros. Sci., 2015, 91: 232
doi: 10.1016/j.corsci.2014.11.018
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[8] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[9] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[10] 许立宁,朱金阳,王贝. Cr含量和pH值对低铬管线钢半钝化行为的影响[J]. 金属学报, 2017, 53(6): 677-683.
[11] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[12] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[13] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[14] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.