Please wait a minute...
金属学报  2023, Vol. 59 Issue (12): 1581-1589    DOI: 10.11900/0412.1961.2021.00503
  本期目录 | 过刊浏览 |
基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能
朱智浩1, 陈志鹏1, 刘田雨2, 张爽3, 董闯1,3(), 王清1
1大连理工大学 三束材料改性教育部重点实验室 大连 116024
2沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022
3大连交通大学 材料科学与工程学院 大连 116028
Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters
ZHU Zhihao1, CHEN Zhipeng1, LIU Tianyu2, ZHANG Shuang3, DONG Chuang1,3(), WANG Qing1
1Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang Research Institute of Foundry Co., Ltd. CAM, Shenyang 110022, China
3School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
引用本文:

朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
Zhihao ZHU, Zhipeng CHEN, Tianyu LIU, Shuang ZHANG, Chuang DONG, Qing WANG. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. Acta Metall Sin, 2023, 59(12): 1581-1589.

全文: PDF(3264 KB)   HTML
摘要: 

在课题组前期工作基础上,设计并铜模吸铸了满足α-{[Al-Ti12](AlTi2)}17 - n + β-{[Al-Ti14](V2Ti)}n 团簇式的合金系列,通过改变β相团簇式的个数n,获得组织覆盖αβ的Ti-(3.19~7.45)Al-(0~12.03)V系列合金,进而表征了铸态组织和室温拉伸力学性能。结果表明,随着n增加,铸态组织由单一α (α'马氏体)经双相态直到单相βα'马氏体形态由板条状逐渐转变为细片状和针状,当n = 5时开始出现β相,n = 8时α'马氏体数量最多且呈针状,当n = 12时α相完全消失,形成单一β相。相应地,合金强度呈先上升而后下降的趋势,塑性变化趋势则相反,这源自细小针状α'马氏体提升强度而降低塑性的作用。当n = 8时,合金的强度达到最大(比Ti-6Al-4V提高了90 MPa),抗拉强度约为1019 MPa、屈服强度约为867 MPa、延伸率与Ti-6Al-4V持平(约为4%),尤其是比强度和比硬度均优于Ti-6Al-4V,达到了230 kN·m/kg和0.76 GPa·cm3/g,分别提升了9%和5%。

关键词 钛合金Ti-Al-V团簇加连接原子模型成分式成分设计显微组织力学性能    
Abstract

The dual-cluster composition formula of the widely-used α + β Ti-6Al-4V and α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](V2Ti)}5, reported in our previous work, indicates that all Ti alloys are composed of α and β units. In this study, Ti-(3.19-7.45)Al-(0-12.03)V (mass fraction, %) alloys are designed following composition formula of [Al-Ti12](AlTi2)}17 - n + β-{[Al-Ti14](V2Ti)}n by changing n value (number of β cluster units). The alloys as prepared by copper mould suction-casting cover microstructures ranging from pure α to pure β. In the as-cast state, as the n value increases, the microstructure changes from single α phase (α' martensite), via α + β dual-phase, and finally to single β phase. The morphology of α' martensite gradually changes from plate-like to lamellar and needle-like. Ti-6Al-4V alloy corresponds to n = 5, where β phase begins to appear. When n = 8, needle-like α' martensite shows the highest content. When n = 12, α phase disappears completely and is replaced by β phase. Correspondingly, the strength of the alloys increases first and then decreases, while the plasticity changes inversely, due to the presence of fine-needle α' martensite. Among all the compositions, Ti-5.28Al-6.14V alloy (n = 8) shows the highest strength (about 90 MPa higher than Ti-6Al-4V), with tensile strength of 1019 MPa, yield strength of 867 MPa. Its specific strength and hardness of 230 kN·m/kg and 0.76 GPa·cm3/g increased by 9% and 5%, respectively, are both superior to Ti-6Al-4V.

Key wordstitanium alloy    Ti-Al-V    cluster-plus-glue atom model    composition formula    composition design    microstructure    mechanical property
收稿日期: 2021-11-22     
ZTFLH:  TG146.2  
基金资助:国家重点基础研究项目(2020JCJQZD165);大连市科技创新基金重点学科重大课题项目(2020JJ25CY004)
通讯作者: 董 闯,dong@dlut.edu.cn,主要从事材料的原子结构模型及成分设计研究
作者简介: 朱智浩,男,1994年生,博士生
图1  hcp和bcc结构的第一近邻团簇,分别为配位数为12的孪晶立方八面体和配位数为14的菱方十二面体,后者的第一近邻由2层构成
Material codenComposition / (mass fraction, %)[Mo]eq[Al]eqTL-S / oC
n00Ti-7.45Al0.07.54.9
n11Ti-7.16Al-0.82V0.67.24.9
n22Ti-6.87Al-1.62V1.16.94.7
n33Ti-6.60Al-2.41V1.46.64.5
n44Ti-6.32Al-3.19V2.16.39.4
n55Ti-6.05Al-3.94V2.66.113.3
n77Ti-5.53Al-5.45V3.65.520.7
n88Ti-5.28Al-6.14V4.15.324.3
n1212Ti-4.30Al-8.87V5.94.331.8
n1717Ti-3.19Al-12.03V8.03.135.1
表1  不同β团簇式个数n设计的合金化学成分以及Mo和Al当量、估算的液固两相区
图2  Ti-Al-V成分图,包含了设计成分、α-[Al-Ti12]Al1Ti2相成分式和部分β相成分式,其中所设计合金分布于连接α-Al2Ti14和β-Al1Ti15V2的直线上(红色方块)
图3  铸态Ti-Al-V合金的XRD谱
图4  典型铸态Ti-Al-V合金的OM像
图5  典型铸态Ti-Al-V合金的SEM像
图6  铸态Ti-Al-V合金的室温拉伸力学性能
图7  铸态Ti-Al-V钛合金的室温拉伸性能与其他热处理态Ti-6Al-4V材料[19,20]对比
图8  铸态Ti-Al-V钛合金的弹性模量
图9  铸态Ti-Al-V钛合金的Vickers硬度和密度以及比硬度和比强度
图10  铸态Ti-Al-V钛合金的室温拉伸不同倍数断口形貌
1 Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64: 1732
doi: 10.1007/s11431-020-1812-9
2 Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
3 Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng., 2014, A597: 212
4 Wei B Q, Ni S, Liu Y, et al. Phase transformation and structural evolution in a Ti-5at.%Al alloy induced by cold-rolling[J]. J. Mater. Sci. Technol., 2020, 49: 211
doi: 10.1016/j.jmst.2020.02.032
5 Qian B N, Zhang J Y, Fu Y Y, et al. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration[J]. J. Mater. Sci. Technol., 2021, 65: 228
doi: 10.1016/j.jmst.2020.04.078
6 Dai S J, Wang Y, Chen F, et al. Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3027
doi: 10.1016/S1003-6326(13)62829-0
7 Manda P, Pathak A, Mukhopadhyay A, et al. Ti-5Al-5Mo-5V-3Cr and similar Mo equivalent alloys: First principles calculations and experimental investigations[J]. J. Appl. Res. Technol., 2017, 15: 21
doi: 10.1016/j.jart.2016.11.001
8 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
9 Jiang B B, Wang Q, Dong C, et al. Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model[J]. Sci. Rep., 2019, 9: 3404
doi: 10.1038/s41598-019-40302-5 pmid: 30833670
10 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
11 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
11 董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
12 Zhang S, Dong C. Dual-cluster interpretation of binary eutectics associated with hexagonal close-packed solid solution phases[J]. Mater. Lett., 2018, 233: 71
doi: 10.1016/j.matlet.2018.08.140
13 Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
13 翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
14 Chong Y, Bhattacharjee T, Tian Y Z, et al. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness[J]. J. Mater. Sci. Technol., 2021, 71: 138
doi: 10.1016/j.jmst.2020.08.057
15 Liu T Y, Zhu Z H, Zhang S, et al. A novel Ti-4.13Al-9.36V alloy of high ductility designed on base of α″-microstructure for laser solid forming[J]. Chin. J. Mater. Res., 2021, 35: 741
15 刘田雨, 朱智浩, 张 爽 等. 基于α″组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金[J]. 材料研究学报, 2021, 35: 741
doi: 10.11901/1005.3093.2020.536
16 Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy[J]. Acta Metall. Sin., 2021, 57: 1246
16 马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
17 Liu T Y, Zhu Z H, Zhang S, et al. Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties[J]. China Foundry, 2021, 18: 424
doi: 10.1007/s41230-021-1065-z
18 Deng A H. Martensitic transformation of titanium alloys[J]. Shanghai Nonferrous Met., 1999, (4): 193
18 邓安华. 钛合金的马氏体相变[J]. 上海有色金属, 1999, (4): 193
19 Liu Z C, Zhang L J, Zhang C H. Effect of oxygen content on the mechanical properties of TC4 titanium alloy[J]. World Nonferrous Met., 2016, (16): 151
19 刘志成, 张利军, 张晨辉. 氧含量对TC4钛合金力学性能的影响[J]. 世界有色金属, 2016, (16): 151
20 Mao J H, Yang X K, Luo B L. Effect of element Fe on mechanical properties of TC4ELI alloy[J]. Heat Treat. Met., 2019, 44(6): 95
20 毛江虹, 杨晓康, 罗斌莉. Fe元素对TC4ELI合金力学性能的影响[J]. 金属热处理, 2019, 44(6): 95
21 Wang Q, Ji C J, Wang Y M, et al. β-Ti Alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
22 Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
23 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes[J]. Mater. Charact., 2020, 160: 110135
doi: 10.1016/j.matchar.2020.110135
24 Alizadeh M, Beni H A, Ghaffari M, et al. Properties of high specific strength Al-4wt.%Al2O3/B4C nano-composite produced by accumulative roll bonding process[J]. Mater. Des., 2013, 50: 427
doi: 10.1016/j.matdes.2013.03.018
25 Zhou Y J, Sun K X, Zhang Y M, et al. Preparing process of ZL101A alloy by vacuum casting and its properties[J]. Foundry, 2011, 60: 1167
25 周延军, 宋克兴, 张彦敏 等. 真空熔铸法制备ZL101A合金工艺及性能研究[J]. 铸造, 2011, 60: 1167
26 Raganya L, Moshokoa N, Obadele B A, et al. Investigation of the tensile properties of heat treated Ti-Mo alloys[J]. Mater. Today, 2021, 38: 1044
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.