|
|
基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能 |
朱智浩1, 陈志鹏1, 刘田雨2, 张爽3, 董闯1,3( ), 王清1 |
1大连理工大学 三束材料改性教育部重点实验室 大连 116024 2沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022 3大连交通大学 材料科学与工程学院 大连 116028 |
|
Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters |
ZHU Zhihao1, CHEN Zhipeng1, LIU Tianyu2, ZHANG Shuang3, DONG Chuang1,3( ), WANG Qing1 |
1Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang Research Institute of Foundry Co., Ltd. CAM, Shenyang 110022, China 3School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China |
引用本文:
朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
Zhihao ZHU,
Zhipeng CHEN,
Tianyu LIU,
Shuang ZHANG,
Chuang DONG,
Qing WANG.
Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. Acta Metall Sin, 2023, 59(12): 1581-1589.
1 |
Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64: 1732
doi: 10.1007/s11431-020-1812-9
|
2 |
Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
|
3 |
Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng., 2014, A597: 212
|
4 |
Wei B Q, Ni S, Liu Y, et al. Phase transformation and structural evolution in a Ti-5at.%Al alloy induced by cold-rolling[J]. J. Mater. Sci. Technol., 2020, 49: 211
doi: 10.1016/j.jmst.2020.02.032
|
5 |
Qian B N, Zhang J Y, Fu Y Y, et al. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration[J]. J. Mater. Sci. Technol., 2021, 65: 228
doi: 10.1016/j.jmst.2020.04.078
|
6 |
Dai S J, Wang Y, Chen F, et al. Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3027
doi: 10.1016/S1003-6326(13)62829-0
|
7 |
Manda P, Pathak A, Mukhopadhyay A, et al. Ti-5Al-5Mo-5V-3Cr and similar Mo equivalent alloys: First principles calculations and experimental investigations[J]. J. Appl. Res. Technol., 2017, 15: 21
doi: 10.1016/j.jart.2016.11.001
|
8 |
Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
|
9 |
Jiang B B, Wang Q, Dong C, et al. Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model[J]. Sci. Rep., 2019, 9: 3404
doi: 10.1038/s41598-019-40302-5
pmid: 30833670
|
10 |
Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
|
11 |
Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
|
11 |
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
|
12 |
Zhang S, Dong C. Dual-cluster interpretation of binary eutectics associated with hexagonal close-packed solid solution phases[J]. Mater. Lett., 2018, 233: 71
doi: 10.1016/j.matlet.2018.08.140
|
13 |
Zhai B, Zhou K, Lv P, et al. Rapid solidification of Ti-6Al-4V alloy micro-droplets under free fall condition[J]. Acta Metall. Sin., 2018, 54: 824
doi: 10.11900/0412.1961.2017.00312
|
13 |
翟 斌, 周 凯, 吕 鹏 等. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54: 824
|
14 |
Chong Y, Bhattacharjee T, Tian Y Z, et al. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness[J]. J. Mater. Sci. Technol., 2021, 71: 138
doi: 10.1016/j.jmst.2020.08.057
|
15 |
Liu T Y, Zhu Z H, Zhang S, et al. A novel Ti-4.13Al-9.36V alloy of high ductility designed on base of α″-microstructure for laser solid forming[J]. Chin. J. Mater. Res., 2021, 35: 741
|
15 |
刘田雨, 朱智浩, 张 爽 等. 基于α″组织设计适于激光立体成形的新型高塑性Ti-4.13Al-9.36V合金[J]. 材料研究学报, 2021, 35: 741
doi: 10.11901/1005.3093.2020.536
|
16 |
Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy[J]. Acta Metall. Sin., 2021, 57: 1246
|
16 |
马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
|
17 |
Liu T Y, Zhu Z H, Zhang S, et al. Design for Ti-Al-V-Mo-Nb alloys for laser additive manufacturing based on a cluster model and on their microstructure and properties[J]. China Foundry, 2021, 18: 424
doi: 10.1007/s41230-021-1065-z
|
18 |
Deng A H. Martensitic transformation of titanium alloys[J]. Shanghai Nonferrous Met., 1999, (4): 193
|
18 |
邓安华. 钛合金的马氏体相变[J]. 上海有色金属, 1999, (4): 193
|
19 |
Liu Z C, Zhang L J, Zhang C H. Effect of oxygen content on the mechanical properties of TC4 titanium alloy[J]. World Nonferrous Met., 2016, (16): 151
|
19 |
刘志成, 张利军, 张晨辉. 氧含量对TC4钛合金力学性能的影响[J]. 世界有色金属, 2016, (16): 151
|
20 |
Mao J H, Yang X K, Luo B L. Effect of element Fe on mechanical properties of TC4ELI alloy[J]. Heat Treat. Met., 2019, 44(6): 95
|
20 |
毛江虹, 杨晓康, 罗斌莉. Fe元素对TC4ELI合金力学性能的影响[J]. 金属热处理, 2019, 44(6): 95
|
21 |
Wang Q, Ji C J, Wang Y M, et al. β-Ti Alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
|
22 |
Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
|
23 |
Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes[J]. Mater. Charact., 2020, 160: 110135
doi: 10.1016/j.matchar.2020.110135
|
24 |
Alizadeh M, Beni H A, Ghaffari M, et al. Properties of high specific strength Al-4wt.%Al2O3/B4C nano-composite produced by accumulative roll bonding process[J]. Mater. Des., 2013, 50: 427
doi: 10.1016/j.matdes.2013.03.018
|
25 |
Zhou Y J, Sun K X, Zhang Y M, et al. Preparing process of ZL101A alloy by vacuum casting and its properties[J]. Foundry, 2011, 60: 1167
|
25 |
周延军, 宋克兴, 张彦敏 等. 真空熔铸法制备ZL101A合金工艺及性能研究[J]. 铸造, 2011, 60: 1167
|
26 |
Raganya L, Moshokoa N, Obadele B A, et al. Investigation of the tensile properties of heat treated Ti-Mo alloys[J]. Mater. Today, 2021, 38: 1044
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|