|
|
机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发 |
杨累1,2, 赵帆1,2,3( ), 姜磊1,2, 谢建新1,2,4 |
1.北京科技大学 新材料技术研究院 现代交通金属材料与加工技术北京实验室 北京 100083 2.北京科技大学 新材料技术研究院 材料先进制备技术教育部重点实验室 北京 100083 3.东北轻合金有限责任公司 哈尔滨 150060 4.北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083 |
|
Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning |
YANG Lei1,2, ZHAO Fan1,2,3( ), JIANG Lei1,2, XIE Jianxin1,2,4 |
1.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 3.Northeast Light Alloy Co., Ltd., Harbin 150060, China 4.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
Lei YANG,
Fan ZHAO,
Lei JIANG,
Jianxin XIE.
Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. Acta Metall Sin, 2023, 59(11): 1499-1512.
1 |
Ou M G, Yang C L, Zhu J, et al. Influence of Cr content and Q-P-T process on the microstructure and properties of cold-coiled spring steel [J]. J. Alloys Compd., 2017, 697: 43
doi: 10.1016/j.jallcom.2016.12.134
|
2 |
Nam W J, Kim D S, Ahn S T. Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels [J]. J. Mater. Sci., 2003, 38: 3611
doi: 10.1023/A:1025625330442
|
3 |
Wu D, Wang F M, Cheng J, et al. Effects of Nb and tempering time on carbide precipitation behavior and mechanical properties of Cr-Mo-V steel for brake discs [J]. Steel Res. Int., 2018, 89: 1700491
doi: 10.1002/srin.v89.5
|
4 |
Zhang J Z, Dai Z B, Zeng L Y, et al. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and modeling [J]. Acta Mater., 2021, 217: 117176
doi: 10.1016/j.actamat.2021.117176
|
5 |
Zurnadzhy V I, Efremenko V G, Wu K M, et al. Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel [J]. Mater. Sci. Eng., 2019, A745: 307
|
6 |
Jiang B, Wu M, Zhang M, et al. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters [J]. Mater. Sci. Eng., 2017, A707: 306
|
7 |
Xu L, Chen L, Sun W Y. Effects of soaking and tempering temperature on microstructure and mechanical properties of 65Si2MnWE spring steel [J]. Vacuum, 2018, 154: 322
doi: 10.1016/j.vacuum.2018.05.029
|
8 |
Kim S H, Kim K H, Bae C M, et al. Microstructure and mechanical properties of austempered medium-carbon spring steel [J]. Met. Mater. Int., 2018, 24: 693
doi: 10.1007/s12540-018-0085-8
|
9 |
Jiang B, Mei Z, Zhou L Y, et al. Microstructure evolution, fracture and hardening mechanisms of quenched and tempered steel for large sized bearing rings at elevated quenching temperatures [J]. Met. Mater. Int., 2016, 22: 572
doi: 10.1007/s12540-016-5493-z
|
10 |
Barani A A, Ponge D, Raabe D. Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment [J]. Mater. Sci. Eng., 2006, A426: 194
|
11 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
11 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
12 |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
12 |
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
13 |
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
|
14 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
|
15 |
Jiang L, Wang C S, Fu H D, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2021, 98: 33
doi: 10.1016/j.jmst.2021.05.011
|
16 |
Schoenholz S S, Cubuk E D, Sussman D M, et al. A structural approach to relaxation in glassy liquids [J]. Nat. Phys., 2016, 12: 469
doi: 10.1038/NPHYS3644
|
17 |
Cubuk E D, Schoenholz S S, Rieser J M, et al. Identifying structural flow defects in disordered solids using machine-learning methods [J]. Phys. Rev. Lett., 2015, 114: 108001
doi: 10.1103/PhysRevLett.114.108001
|
18 |
Lu S H, Zhou Q H, Ouyang Y X, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning [J]. Nat. Commun., 2018, 9: 3405
doi: 10.1038/s41467-018-05761-w
pmid: 30143621
|
19 |
Xu Q C, Li Z Z, Liu M, et al. Rationalizing perovskite data for machine learning and materials design [J]. J. Phys. Chem. Lett., 2018, 9: 6948
doi: 10.1021/acs.jpclett.8b03232
pmid: 30481460
|
20 |
Fleischer R L. Substitutional solution hardening [J]. Acta Metall., 1963, 11: 203
doi: 10.1016/0001-6160(63)90213-X
|
21 |
Toda-Caraballo I, Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Understanding the factors influencing yield strength on Mg alloys [J]. Acta Mater., 2014, 75: 287
doi: 10.1016/j.actamat.2014.04.064
|
22 |
Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. A model for the microstructure behaviour and strength evolution in lath martensite [J]. Acta Mater., 2015, 98: 81
doi: 10.1016/j.actamat.2015.07.018
|
23 |
Youssef K M, Scattergood R O, Murty K L, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility [J]. Scr Mater., 2006, 54: 251
doi: 10.1016/j.scriptamat.2005.09.028
|
24 |
Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Mater., 2004, 52: 4589
doi: 10.1016/j.actamat.2004.06.017
|
25 |
Zhu J, Xie J X, Zhang Z H, et al. Microstructure and obdurability improvement mechanisms of the La-microalloyed H13 steel [J]. Steel Res. Int., 2018, 89: 1800044
doi: 10.1002/srin.v89.12
|
26 |
Krasilnikov N, Lojkowski W, Pakiela Z, et al. Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation [J]. Mater. Sci. Eng., 2005, A397: 330
|
27 |
Kako K, Kawakami E, Ohta J, et al. Effects of various alloying elements on tensile properties of high-purity Fe-18Cr-(14-16)Ni allo-ys at room temperature [J]. Mater. Trans., 2002, 43: 155
doi: 10.2320/matertrans.43.155
|
28 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
|
29 |
Shi R J, Wang Z D, Qiao L J, et al. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel [J]. J. Mater. Sci. Technol., 2019, 35: 1940
doi: 10.1016/j.jmst.2019.05.009
|
30 |
Rivera-Díaz-Del-Castillo P E J, Hayashi K, Galindo-Nava E I. Computational design of nanostructured steels employing irreversible thermodynamics [J]. Mater. Sci. Technol., 2013, 29: 1206
doi: 10.1179/1743284712Y.0000000179
|
31 |
Jo M C, Choi J H, Lee H, et al. Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels [J]. Mater. Sci. Eng., 2019, A740-741: 16
|
32 |
Hamada A S, Karjalainen L P, Somani M C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels [J]. Mater. Sci. Eng., 2007, A467: 114
|
33 |
Zhang H L, Sun M Y, Liu Y X, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness [J]. Acta Mater., 2021, 211: 116878
doi: 10.1016/j.actamat.2021.116878
|
34 |
Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
doi: 10.1016/j.actamat.2021.116986
|
35 |
Jiang Y, Zou J H, Liang Y L, et al. Influence of carbides on the strain hardening behavior of 60Si2CrVAT spring steel treated by a Q&T process [J]. Mater. Sci. Eng., 2021, A823: 141695
|
36 |
Wu H L, Wang F M, Li C R, et al. Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains [J]. Trans. Mater. Heat Treat., 2011, 32(9): 35
|
36 |
吴华林, 王福明, 李长荣 等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化 [J]. 材料热处理学报, 2011, 32(9): 35
|
37 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
38 |
Pardal J M, Tavares S S M, Terra V F, et al. Modeling of precipitation hardening during the aging and overaging of 18Ni-Co-Mo-Ti maraging 300 steel [J]. J. Alloys Compd., 2005, 393: 109
doi: 10.1016/j.jallcom.2004.09.049
|
39 |
Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Mater., 2019, 179: 296
doi: 10.1016/j.actamat.2019.08.042
|
40 |
Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66: 36
doi: 10.1016/j.jmst.2020.06.014
|
41 |
Tharian K T, Sivakumar D, Ganesan R, et al. Development of new low nickel, cobalt free maraging steel [J]. Mater. Sci. Technol., 1991, 7: 1082
doi: 10.1179/mst.1991.7.12.1082
|
42 |
Zhang J Z, Cui Y G, Zuo X W, et al. Dislocations across interphase enable plain steel with high strength-ductility [J]. Sci. Bull., 2021, 66: 1058
doi: 10.1016/j.scib.2021.02.032
pmid: 36654339
|
43 |
Viswanathan U K, Kishore R, Asundi M K. Effect of thermal cycling on the mechanical properties of 350-grade maraging steel [J]. Metall. Mater. Trans., 1996, 27A: 757
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|