Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1499-1512    DOI: 10.11900/0412.1961.2022.00047
  本期目录 | 过刊浏览 |
机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发
杨累1,2, 赵帆1,2,3(), 姜磊1,2, 谢建新1,2,4
1.北京科技大学 新材料技术研究院 现代交通金属材料与加工技术北京实验室 北京 100083
2.北京科技大学 新材料技术研究院 材料先进制备技术教育部重点实验室 北京 100083
3.东北轻合金有限责任公司 哈尔滨 150060
4.北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083
Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning
YANG Lei1,2, ZHAO Fan1,2,3(), JIANG Lei1,2, XIE Jianxin1,2,4
1.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory for Advanced Materials Processing (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3.Northeast Light Alloy Co., Ltd., Harbin 150060, China
4.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
Lei YANG, Fan ZHAO, Lei JIANG, Jianxin XIE. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. Acta Metall Sin, 2023, 59(11): 1499-1512.

全文: PDF(5993 KB)   HTML
摘要: 

通过收集弹簧钢及其他典型淬火+回火型钢铁材料的文献数据,采用面向性能的机器学习设计系统(MLDS)结合实验优化,实现了具备超高强度和良好塑性的新型弹簧钢化学成分及热处理工艺参数的快速设计。所开发的2种新型弹簧钢的抗拉强度分别为2183.5和2193.0 MPa、屈服强度分别为1923.0和2024.5 MPa、断后伸长率分别为10.5%和9.7%、断面收缩率分别为42.4%和41.5%。新型弹簧钢的强化方式以晶界强化和位错强化为主,细小的晶粒尺寸和适量的奥氏体使得弹簧钢在具备超高强度的同时保持良好的塑性。与现有同等强度级别的超高强度钢相比,新型弹簧钢具有显著的成本优势和工艺优势。

关键词 弹簧钢超高强热处理机器学习    
Abstract

The rapid development of rail transit has led to the proposition of higher requirements for the mechanical properties of springs and spring steels. Thus, bogies have been identified as the key components for trains to achieve high speed since they are connected with train bodies and wheel sets through springs. Alternatively, since the properties of spring steel materials have an important effect on the safety and comfort of high-speed trains, the development of spring steels with ultra-high strength and good plasticity has attracted the attention of researchers and industrial circles. However, simultaneously improving strength and plasticity has remained an important challenge for the research and development of high-end steels. Notwithstanding, machine learning has recently made substantial progress in designing and predicting various materials, and is expected to become a powerful tool for clarifying the relationship between the composition, process, and properties of complex alloys like steels. Based on the above background, this study reports the realization of rapid chemical composition and heat treatment process-design parameters for new spring steels, using a performance-oriented machine learning design system with high strength and good plasticity (tensile strength (2050 ± 50) MPa, elongation 10.5% ± 1.5%) after collecting literature data on spring steels and other typical quenched + tempered steels. Experimental studies were also carried out to obtain a further optimized heat treatment process (heating at 950oC for 30 min and oil quenching + tempering at 380oC for 90 min and water cooling). Investigations revealed that the tensile strengths of the two new spring steel materials developed were 2183.5 and 2193.0 MPa, their yield strengths were 1923.0 and 2024.5 MPa, their elongations after fracture were 10.5% and 9.7%, and the area reductions were 42.4% and 41.5%, respectively, with grain boundary strengthening and dislocation strengthening being the main strengthening mechanisms of the new spring steels. It was also observed that the fine grain size and appropriate amounts of austenite made the spring steels maintain good plasticity and have ultra-high strength. Moreover, compared with the existing ultra-high strength steels at the same strength grade, the new spring steels had significant technological and cost advantages. Hence, based on the above research, a new method and theory are provided to design chemical composition and heat treatment processes for quenched and tempered steels.

Key wordsspring steel    ultra-high strength    heat treatment    machine learning
收稿日期: 2022-02-14     
ZTFLH:  TG142.33  
基金资助:国家自然科学基金项目(52101118);中国科协青年人才托举工程项目(2022QNRC001)
通讯作者: 赵 帆,zhaofan@ustb.edu.cn,主要从事高品质特殊钢开发和质量控制研究
Corresponding author: ZHAO Fan, Tel: (010)62332253, E-mail: zhaofan@ustb.edu.cn
作者简介: 杨 累,男,1995年生,硕士生
图1  机器学习设计系统(MLDS)原理图
图2  神经元网络结构图
图3  抗拉强度和断后伸长率的C2P模型训练结果
图4  MLDS和P2C模型所设计元素含量和热处理工艺参数的波动分析
图5  抗拉强度和伸长率的样本数据和MLDS设计结果
SteelChemical composition (mass fraction / %)Heat treatment parameterMechanical property
CSiMnCrNiMoVNbTQtQTTtTRmARp0.2Z
oCminoCminMPa%MPa%
1# predicted0.501.630.731.200.210.270.140.0209073142389207512.0--
1# actual0.551.760.701.100.210.200.140.0169103042090204611.9164438.0
2# predicted0.571.700.701.170.180.220.340.0109143342093209610.9--
2# actual0.541.750.641.180.200.200.370.0039103042090204410.0169533.9
表1  MLDS预测结果和实验验证结果的比较
图6  1#钢和2#钢在不同温度淬火后的XRD谱
图7  1#钢和2#钢在不同温度淬火后显微组织的SEM像
图8  淬火温度对力学性能的影响
图9  淬火保温时间对力学性能的影响
图10  1#钢和2#钢在不同温度回火后试样的XRD谱
图11  1#钢和2#钢在不同温度回火后显微组织的SEM像
图12  1#钢和2#钢在不同温度回火后显微组织的TEM像
图13  回火温度对力学性能的影响
图14  回火时间对力学性能的影响
图15  1#钢和2#钢晶粒取向的EBSD像
图16  1#钢和2#钢碳膜萃取析出相的TEM像和EDS分析结果
图17  各种强化机理对屈服强度的贡献
图18  孪晶的TEM明场像和选区电子衍射花样
图19  1#钢和2#钢在不同温度回火后的拉伸曲线
图20  奥氏体的TEM明场像和选区电子衍射花样
图21  所开发钢种与文献[35,36]报道60Si2CrVAT的力学性能和合金元素含量对比(c) alloying element content
1 Ou M G, Yang C L, Zhu J, et al. Influence of Cr content and Q-P-T process on the microstructure and properties of cold-coiled spring steel [J]. J. Alloys Compd., 2017, 697: 43
doi: 10.1016/j.jallcom.2016.12.134
2 Nam W J, Kim D S, Ahn S T. Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels [J]. J. Mater. Sci., 2003, 38: 3611
doi: 10.1023/A:1025625330442
3 Wu D, Wang F M, Cheng J, et al. Effects of Nb and tempering time on carbide precipitation behavior and mechanical properties of Cr-Mo-V steel for brake discs [J]. Steel Res. Int., 2018, 89: 1700491
doi: 10.1002/srin.v89.5
4 Zhang J Z, Dai Z B, Zeng L Y, et al. Revealing carbide precipitation effects and their mechanisms during quenching-partitioning-tempering of a high carbon steel: Experiments and modeling [J]. Acta Mater., 2021, 217: 117176
doi: 10.1016/j.actamat.2021.117176
5 Zurnadzhy V I, Efremenko V G, Wu K M, et al. Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel [J]. Mater. Sci. Eng., 2019, A745: 307
6 Jiang B, Wu M, Zhang M, et al. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters [J]. Mater. Sci. Eng., 2017, A707: 306
7 Xu L, Chen L, Sun W Y. Effects of soaking and tempering temperature on microstructure and mechanical properties of 65Si2MnWE spring steel [J]. Vacuum, 2018, 154: 322
doi: 10.1016/j.vacuum.2018.05.029
8 Kim S H, Kim K H, Bae C M, et al. Microstructure and mechanical properties of austempered medium-carbon spring steel [J]. Met. Mater. Int., 2018, 24: 693
doi: 10.1007/s12540-018-0085-8
9 Jiang B, Mei Z, Zhou L Y, et al. Microstructure evolution, fracture and hardening mechanisms of quenched and tempered steel for large sized bearing rings at elevated quenching temperatures [J]. Met. Mater. Int., 2016, 22: 572
doi: 10.1007/s12540-016-5493-z
10 Barani A A, Ponge D, Raabe D. Refinement of grain boundary carbides in a Si-Cr spring steel by thermomechanical treatment [J]. Mater. Sci. Eng., 2006, A426: 194
11 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
11 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
12 Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
12 谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
13 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
14 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
15 Jiang L, Wang C S, Fu H D, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2021, 98: 33
doi: 10.1016/j.jmst.2021.05.011
16 Schoenholz S S, Cubuk E D, Sussman D M, et al. A structural approach to relaxation in glassy liquids [J]. Nat. Phys., 2016, 12: 469
doi: 10.1038/NPHYS3644
17 Cubuk E D, Schoenholz S S, Rieser J M, et al. Identifying structural flow defects in disordered solids using machine-learning methods [J]. Phys. Rev. Lett., 2015, 114: 108001
doi: 10.1103/PhysRevLett.114.108001
18 Lu S H, Zhou Q H, Ouyang Y X, et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning [J]. Nat. Commun., 2018, 9: 3405
doi: 10.1038/s41467-018-05761-w pmid: 30143621
19 Xu Q C, Li Z Z, Liu M, et al. Rationalizing perovskite data for machine learning and materials design [J]. J. Phys. Chem. Lett., 2018, 9: 6948
doi: 10.1021/acs.jpclett.8b03232 pmid: 30481460
20 Fleischer R L. Substitutional solution hardening [J]. Acta Metall., 1963, 11: 203
doi: 10.1016/0001-6160(63)90213-X
21 Toda-Caraballo I, Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Understanding the factors influencing yield strength on Mg alloys [J]. Acta Mater., 2014, 75: 287
doi: 10.1016/j.actamat.2014.04.064
22 Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. A model for the microstructure behaviour and strength evolution in lath martensite [J]. Acta Mater., 2015, 98: 81
doi: 10.1016/j.actamat.2015.07.018
23 Youssef K M, Scattergood R O, Murty K L, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility [J]. Scr Mater., 2006, 54: 251
doi: 10.1016/j.scriptamat.2005.09.028
24 Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Mater., 2004, 52: 4589
doi: 10.1016/j.actamat.2004.06.017
25 Zhu J, Xie J X, Zhang Z H, et al. Microstructure and obdurability improvement mechanisms of the La-microalloyed H13 steel [J]. Steel Res. Int., 2018, 89: 1800044
doi: 10.1002/srin.v89.12
26 Krasilnikov N, Lojkowski W, Pakiela Z, et al. Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation [J]. Mater. Sci. Eng., 2005, A397: 330
27 Kako K, Kawakami E, Ohta J, et al. Effects of various alloying elements on tensile properties of high-purity Fe-18Cr-(14-16)Ni allo-ys at room temperature [J]. Mater. Trans., 2002, 43: 155
doi: 10.2320/matertrans.43.155
28 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
29 Shi R J, Wang Z D, Qiao L J, et al. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel [J]. J. Mater. Sci. Technol., 2019, 35: 1940
doi: 10.1016/j.jmst.2019.05.009
30 Rivera-Díaz-Del-Castillo P E J, Hayashi K, Galindo-Nava E I. Computational design of nanostructured steels employing irreversible thermodynamics [J]. Mater. Sci. Technol., 2013, 29: 1206
doi: 10.1179/1743284712Y.0000000179
31 Jo M C, Choi J H, Lee H, et al. Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels [J]. Mater. Sci. Eng., 2019, A740-741: 16
32 Hamada A S, Karjalainen L P, Somani M C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels [J]. Mater. Sci. Eng., 2007, A467: 114
33 Zhang H L, Sun M Y, Liu Y X, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness [J]. Acta Mater., 2021, 211: 116878
doi: 10.1016/j.actamat.2021.116878
34 Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
doi: 10.1016/j.actamat.2021.116986
35 Jiang Y, Zou J H, Liang Y L, et al. Influence of carbides on the strain hardening behavior of 60Si2CrVAT spring steel treated by a Q&T process [J]. Mater. Sci. Eng., 2021, A823: 141695
36 Wu H L, Wang F M, Li C R, et al. Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains [J]. Trans. Mater. Heat Treat., 2011, 32(9): 35
36 吴华林, 王福明, 李长荣 等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化 [J]. 材料热处理学报, 2011, 32(9): 35
37 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
38 Pardal J M, Tavares S S M, Terra V F, et al. Modeling of precipitation hardening during the aging and overaging of 18Ni-Co-Mo-Ti maraging 300 steel [J]. J. Alloys Compd., 2005, 393: 109
doi: 10.1016/j.jallcom.2004.09.049
39 Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Mater., 2019, 179: 296
doi: 10.1016/j.actamat.2019.08.042
40 Kim Y K, Kim K S, Song Y B, et al. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66: 36
doi: 10.1016/j.jmst.2020.06.014
41 Tharian K T, Sivakumar D, Ganesan R, et al. Development of new low nickel, cobalt free maraging steel [J]. Mater. Sci. Technol., 1991, 7: 1082
doi: 10.1179/mst.1991.7.12.1082
42 Zhang J Z, Cui Y G, Zuo X W, et al. Dislocations across interphase enable plain steel with high strength-ductility [J]. Sci. Bull., 2021, 66: 1058
doi: 10.1016/j.scib.2021.02.032 pmid: 36654339
43 Viswanathan U K, Kishore R, Asundi M K. Effect of thermal cycling on the mechanical properties of 350-grade maraging steel [J]. Metall. Mater. Trans., 1996, 27A: 757
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[9] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[12] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[13] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[14] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[15] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.