Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 932-942    DOI: 10.11900/0412.1961.2021.00329
  研究论文 本期目录 | 过刊浏览 |
喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为
吴彩虹1, 冯迪1(), 臧千昊1, 范诗春1, 张豪2, 李胤樹3
1.江苏科技大学 材料科学与工程学院 镇江 212003
2.江苏豪然喷射成形合金有限公司 镇江 212009
3.Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Korea
Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy
WU Caihong1, FENG Di1(), ZANG Qianhao1, FAN Shichun1, ZHANG Hao2, LEE Yunsoo3
1.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Jiangsu Haoran Spray Forming Alloy Co., Ltd., Zhenjiang 212009, China
3.Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Korea
引用本文:

吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
Caihong WU, Di FENG, Qianhao ZANG, Shichun FAN, Hao ZHANG, Yunsoo LEE. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. Acta Metall Sin, 2022, 58(7): 932-942.

全文: PDF(5069 KB)   HTML
摘要: 

采用热压缩实验、SEM、TEM以及EBSD技术研究了喷射成形Al25Si4Cu1Mg (质量分数,%)合金的热变形组织演变规律及动态再结晶形核机制。结果表明:喷射态组织主要由等轴α-Al相、粗大块状Si相、AlSiCuMg相和不同尺度的Al2Cu相构成。在623~723 K和0.001~5 s–1条件下,细小的Al2Cu相随形变温度的升高而逐渐回溶。高应变速率(5 s–1)热压缩时,位错塞积在粗大不溶初生相前沿产生应力集中,导致部分脆性初生相开裂,同时在初生相与α-Al相界面处出现局部裂纹。α-Al相则发生了完全动态再结晶。再结晶晶粒尺寸随着变形温度的下降和应变速率的提高而降低,晶粒内部的残留位错和形变亚结构随形变温度的升高而逐渐减少。随机织构表明,喷射成形Al25Si4Cu1Mg合金的动态再结晶机制为“粒子激发形核 (PSN)”机制。

关键词 AlSiCuMg合金喷射成形热压缩粒子激发形核动态再结晶    
Abstract

Wrought Al-Si alloy has partially replaced the traditional wear-resistant alloy for structural weight reduction owing to the excellent comprehensive properties, such as wear resistance, low coefficient of thermal expansion, and high specific strength. The deformation aluminum alloy based on Al-Si binary alloy is widely used in aerospace and automotive industries. The hot compression test, SEM, TEM, and EBSD technologies were used to investigate the microstructure evolution and dynamic recrystallization nucleation mechanism of spray formed Al25Si4Cu1Mg (mass fraction, %) alloy. The results show that the as-sprayed microstructure consists of equiaxed α-Al, coarse Si phase, AlSiCuMg phase, and Al2Cu phase with different scales. Under 623-723 K and 0.001-5 s-1, the fine Al2Cu phases gradually dissolve with the increase in deformation temperature. During high strain rate (5 s-1) compression, dislocation accumulation causes a high degree of stress concentration in front of the coarse and insoluble primary phases, resulting in the cracking of some brittle primary phases. Local cracks also appear at the interfaces between α-Al and primary phases. The α-Al phase undergoes complete dynamic recrystallization. The recrystallized grain size decreases with the increase and decrease in strain rate and deformation temperature, respectively. The residual dislocation and deformation substructure in the grain decrease with the increase in deformation temperature. The random texture demonstrates that the dynamic recrystallization mechanism of spray formed Al25Si4Cu1Mg alloy is “particle stimulated nucleation (PSN)”.

Key wordsAlSiCuMg alloy    spray forming    hot compression    particle stimulate nucleation    dynamic recrystallization
收稿日期: 2021-08-12     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51801082);镇江市重点研发计划项目(GY2021003);镇江市重点研发计划项目(GY2021020);江苏省大学生创新创业计划重点领域项目(202110289002Z);江苏省研究生科研与实践创新计划项目(KYCX21_3453)
作者简介: 吴彩虹,女,2000年生,硕士生
图1  喷射态Al25Si4Cu1Mg合金的SEM像、XRD谱及反极图(IPF)
ZoneComposition / (atomic fraction, %)Phase
AlSiCuMg
161.83-38.17-Crystalline Al2Cu
217.2932.8712.3137.53AlSiCuMg
31.2898.72--Si
497.03-2.97-Precipitated Al2Cu
表1  喷射态Al25Si4Cu1Mg合金第二相的EDS分析结果
图2  喷射态Al25Si4Cu1Mg合金在623、673和723 K以及不同应变速率条件下的真应力-真应变曲线
图3  Al25Si4Cu1Mg合金喷射态和不同热压缩条件下的SEM像
图4  Al25Si4Cu1Mg合金不同热压缩条件下的TEM像
图5  Al25Si4Cu1Mg喷射态和不同热压缩条件下的晶粒组织形貌EBSD像
图6  Al25Si4Cu1Mg合金喷射态和不同条件热压缩组织对应的{111}极图
图7  不同变形条件下喷射成形Al25Si4Cu1Mg合金的热变形组织演变示意图
1 Sadeghi I, Wells M A, Esmaeili S. Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg [J]. J. Mater. Process. Technol., 2018, 251: 232
doi: 10.1016/j.jmatprotec.2017.08.042
2 Damavandi E, Nourouzi S, Rabiee S M, et al. Textural evaluation of Al-Si-Cu alloy processed by route BC-ECAP [J]. Met. Mater. Int., 2021, 27: 2756
doi: 10.1007/s12540-020-00953-w
3 Di Giovanni M T, Mørtsell E A, Saito T, et al. Influence of Cu addition on the heat treatment response of A356 [J]. Mater. Today Commun., 2019, 19: 342
doi: 10.1016/j.mtcomm.2019.02.013
4 Wang Y J, Liao H C, Wu Y N, et al. Effect of Si content on microstructure and mechanical properties of Al-Si-Mg alloys [J]. Mater. Des., 2014, 53: 634
doi: 10.1016/j.matdes.2013.07.067
5 Wu Y N, Liao H C, Zhou K X. Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al-Si-Mg alloy [J]. Mater. Sci. Eng., 2014, A602: 41
6 Liao H C, Wu Y N, Ding K. Hardening response and precipitation behavior of Al-7%Si-0.3%Mg alloy in a pre-aging process [J]. Mater. Sci. Eng., 2013, A560: 811
7 Lin G Y, Tan X, Feng D, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy [J]. Int. J. Min. Met. Mater., 2019, 8: 1013
8 Dang B, Zhang X, Chen Y Z, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy [J]. Sci. Rep., 2016, 6: 30874
doi: 10.1038/srep30874 pmid: 27502444
9 Hwang J W, Banerjee R, Doty H W, et al. The effect of Mg on the structure and properties of Type 319 aluminum casting alloys [J]. Acta Mater., 2009, 57: 1308
doi: 10.1016/j.actamat.2008.11.021
10 Zheng Q J, Ye Z F, Jiang H X, et al. Effect of micro-alloying element la on solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. Acta Metall. Sin., 2021, 57: 103
10 郑秋菊, 叶中飞, 江鸿翔 等. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响 [J]. 金属学报, 2021, 57: 103
doi: 10.11900/0412.1961.2020.00158
11 Zhang J Y, Zuo L J, Feng J, et al. Effect of thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni-Mg alloy produced by different casting technologies [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1717
doi: 10.1016/S1003-6326(20)65333-X
12 Feng D, Han Z J, Li J C, et al. Evolution behavior of primary phase during pre-heat treatment before deformation for spray formed 7055 aluminum alloy [J]. Rare Met. Mater. Eng., 2020, 49: 4253
12 冯 迪, 韩仲杰, 李吉臣 等. 喷射成形7055铝合金初生相在形变前预热处理中的演变行为 [J]. 稀有金属材料与工程, 2020, 49: 4253
13 Jiang Y M, Zhao Y, Zhao Z X, et al. The strengthening mechanism of FSWed spray formed 7055 aluminum alloy under water mist cooling condition [J]. Mater. Charact., 2020, 162: 110185
doi: 10.1016/j.matchar.2020.110185
14 Wu Y N, Liao H C, Liu Y B, et al. Dynamic precipitation of Mg2Si induced by temperature and strain during hot extrusion and its impact on microstructure and mechanical properties of near eutectic Al-Si-Mg-V alloy [J]. Mater. Sci. Eng., 2014, A614: 162
15 Wu Y N, Liao H C, Yang J, et al. Effect of Si content on dynamic recrystallization of Al-Si-Mg alloys during hot extrusion [J]. J. Mater. Sci. Technol., 2014, 30: 1271
doi: 10.1016/j.jmst.2014.07.011
16 Ding K, Liao H C, Jin Q M, et al. Effect of hot extrusion on mechanical properties and microstructure of near eutectic Al-12.0%Si-0.2%Mg alloy [J]. Mater. Sci. Eng., 2010, A527: 6887
17 Hu Y S, Feng D, Zhou J D, et al. Constitutive equation and thermal processing map of spray formed AlSi25Cu4Mg wear resistant alloy [J]. Mater. Rep., 2020, 34: 10120
17 胡余生, 冯 迪, 周建党 等. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图 [J]. 材料导报, 2020, 34: 10120
18 Zang Q H, Yu H S, Lee Y S, et al. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt.%) alloy [J]. J. Alloys Compd., 2018, 763: 25
doi: 10.1016/j.jallcom.2018.05.307
19 Zang Q H, Yu H S, Lee Y S, et al. Effects of initial microstructure on hot deformation behavior of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy [J]. Mater. Charact., 2019, 151: 404
doi: 10.1016/j.matchar.2019.03.019
20 Zang Q H, Feng D, Lee Y S, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling [J]. J. Alloys Compd., 2020, 847: 156481
doi: 10.1016/j.jallcom.2020.156481
21 Feng D, Zhang X M, Liu S D, et al. Effect of grain size on hot deformation behavior of a new high strength aluminum alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2104
21 冯 迪, 张新明, 刘胜胆 等. 晶粒尺寸对新型高强铝合金热变形行为的影响 [J]. 稀有金属材料与工程, 2016, 45: 2104
22 Feng D, Zhang X M, Liu S D, et al. Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature [J]. Mater. Sci. Eng., 2014, A608: 63
23 Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-The deformed state [J]. Acta Mater., 2004, 52: 3239
doi: 10.1016/j.actamat.2004.03.030
24 Feng D, Wang G Y, Chen H M, et al. Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy [J]. Met. Mater. Int., 2018, 24: 195
doi: 10.1007/s12540-017-7324-2
25 Zheng J H, Pruncu C, Zhang K, et al. Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy [J]. Mater. Sci. Eng., 2021, A814: 141158
26 Huang K, Marthinsen K, Zhao Q L, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials [J]. Prog. Mater. Sci., 2018, 92: 284
doi: 10.1016/j.pmatsci.2017.10.004
27 Wu Y N, Liao H C, Zhou K X, et al. Effect of texture evolution on mechanical properties of near eutectic Al-Si-Mg alloy with minor addition of Zr/V during hot extrusion [J]. Mater. Des., 2014, 57: 416
doi: 10.1016/j.matdes.2013.12.068
28 Wang X Y, Jiang J T, Li G A, et al. Particle-stimulated nucleation and recrystallization texture initiated by coarsened Al2CuLi phase in Al-Cu-Li alloy [J]. J. Mater. Res. Technol., 2021, 10: 643
doi: 10.1016/j.jmrt.2020.12.046
29 She H, Shu D, Dong A P, et al. Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2570
doi: 10.1016/j.jmst.2019.07.014
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[4] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[11] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[12] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[13] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[14] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[15] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.