|
|
纳米金属结构材料的韧化 |
赵永好( ), 毛庆忠 |
南京理工大学 材料科学与工程学院 纳米异构材料中心 南京 210094 |
|
Toughening of Nanostructured Metals |
ZHAO Yonghao( ), MAO Qingzhong |
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing Universityof Science and Technology, Nanjing 210094, China |
引用本文:
赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
Yonghao ZHAO,
Qingzhong MAO.
Toughening of Nanostructured Metals[J]. Acta Metall Sin, 2022, 58(11): 1385-1398.
1 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
2 |
Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
|
3 |
Suryanarayana C, Koch C C. Nanocrystalline materials-current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
|
4 |
Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci., 2006, 51: 881
doi: 10.1016/j.pmatsci.2006.02.003
|
5 |
Lin Y J, Wen H M, Li Y, et al. Erratum to: Stress-induced grain growth in an ultra-fine grained Al alloy [J]. Metall. Mater. Trans., 2014, 45B: 1948
|
6 |
Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
doi: 10.1016/S0079-6425(99)00007-9
|
7 |
Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
|
8 |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
|
9 |
Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
doi: 10.1016/j.actamat.2007.09.020
|
10 |
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
|
11 |
Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
|
12 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
13 |
Mao Q Z, Liu Y F, Zhao Y H. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging [J]. J. Alloys Compd., 2022, 896: 163122
doi: 10.1016/j.jallcom.2021.163122
|
14 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
15 |
Koch C C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J]. Scr. Mater., 2003, 49: 657
doi: 10.1016/S1359-6462(03)00394-4
|
16 |
Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
|
17 |
Koch C C, Youssef K M, Scattergood R O, et al. Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys [J]. Adv. Eng. Mater., 2005, 7: 787
doi: 10.1002/adem.200500094
|
18 |
Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
|
19 |
Koch C C. Structural nanocrystalline materials: An overview [J]. J. Mater. Sci., 2007, 42: 1403
doi: 10.1007/s10853-006-0609-3
|
20 |
Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
doi: 10.1002/adem.200900335
|
21 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
22 |
Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys [J]. Mater. Sci. Eng., 2010, A527: 3572
|
23 |
Atwater M A, Scattergood R O, Koch C C. The stabilization of nanocrystalline copper by zirconium [J]. Mater. Sci. Eng., 2013, A559: 250
|
24 |
Fu H L, Zhou X, Xue H T, et al. Breaking the purity-stability dilemma in pure Cu with grain boundary relaxation [J]. Mater. Today, 2022, 55: 66
doi: 10.1016/j.mattod.2022.03.002
|
25 |
Chauhan M, Mohamed F A. Investigation of low temperature thermal stability in bulk nanocrystalline Ni [J]. Mater. Sci. Eng., 2006, A427: 7
|
26 |
Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
doi: 10.1016/j.matdes.2013.02.083
|
27 |
Liang N N, Liu J Z, Lin S C, et al. A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability [J]. J. Alloys Compd., 2018, 735: 1389
doi: 10.1016/j.jallcom.2017.11.309
|
28 |
Liang N N, Zhao Y H, Li Y, et al. Influence of microstructure on thermal stability of ultrafine-grained Cu processed by equal channel angular pressing [J]. J. Mater. Sci., 2018, 53: 13173
doi: 10.1007/s10853-018-2548-1
|
29 |
Tang L L, Zhao Y H, Islamgaliev R K, et al. Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2017, 721: 577
doi: 10.1016/j.jallcom.2017.05.164
|
30 |
Zhang Y S, Zhang W, Wang X, et al. Microstructure and mechanical property evolutions of bulk core-shell structured Ti-N alloys during annealing [J]. J. Alloys Compd., 2017, 710: 418
doi: 10.1016/j.jallcom.2017.03.254
|
31 |
Liang N N, Xu R R, Wu G Z, et al. High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion [J]. Mater. Sci. Eng., 2022, A848: 143399
|
32 |
Liu X R, Wei D J, Zhuang L M, et al. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding [J]. Mater. Sci. Eng., 2015, A642: 1
|
33 |
Liu X R, Zhuang L M, Zhao Y H. Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing [J]. Materials, 2020, 13: 5171
doi: 10.3390/ma13225171
|
34 |
Xu R R, Liang N N, Zhuang L M, et al. Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing [J]. Mater. Sci. Eng., 2022, A832: 142510
|
35 |
Wan Y C, Tang B, Gao Y H, et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging [J]. Acta Mater., 2020, 200: 274
doi: 10.1016/j.actamat.2020.09.024
|
36 |
Mao Q Z, Zhang Y S, Liu J Z, et al. Breaking material property trade-offs via macrodesign of microstructure [J]. Nano Lett., 2021, 21: 3191
doi: 10.1021/acs.nanolett.1c00451
|
37 |
Mao Q Z, Zhang Y S, Guo Y Z, et al. Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire [J]. Commun. Mater., 2021, 2: 46
doi: 10.1038/s43246-021-00150-1
|
38 |
Mao Q Z, Chen X, Li J S, et al. Nano-gradient materials prepared by rotary swaging [J]. Nanomaterials, 2021, 11: 2223
doi: 10.3390/nano11092223
|
39 |
Yang Y, Chen X, Nie J F, et al. Achieving ultra-strong magnesium-lithium alloys by low-strain rotary swaging [J]. Mater. Res. Lett., 2021, 9: 255
doi: 10.1080/21663831.2021.1891150
|
40 |
Mao Q Z, Wang L, Nie J F, et al. Enhancing strength and electrical conductivity of Cu-Cr composite wire by two-stage rotary swaging and aging treatments [J]. Composites, 2022, 231B: 109567
|
41 |
Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 +TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
|
42 |
Nie J F, Liu M X, Wang F, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties [J]. Materials, 2016, 9: 951
doi: 10.3390/ma9110951
|
43 |
Yang Y, Nie J F, Mao Q Z, et al. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation [J]. Results Phys., 2019, 13: 102236
doi: 10.1016/j.rinp.2019.102236
|
44 |
Lu F H, Nie J F, Ma X, et al. Simultaneously improving the tensile strength and ductility of the AlNp/Al composites by the particle's hierarchical structure with bimodal distribution and nano-network [J]. Mater. Sci. Eng., 2020, A770: 138519
|
45 |
Chen X, Liu C M, Wan Y C, et al. Grain refinement mechanisms in gradient nanostructured AZ31B Mg alloy prepared via rotary swaging [J]. Metall. Mater. Trans., 2021, 52A: 4053
|
46 |
Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
|
47 |
Sanders P G, Youngdahl C J, Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Mater. Sci. Eng., 1997, A234-236: 77
|
48 |
Zhao Y H, Topping T, Li Y, et al. Strength and ductility of Bi-modal Cu [J]. Adv. Eng. Mater., 2011, 13: 865
doi: 10.1002/adem.201100019
|
49 |
Hart E W. Theory of the tensile test [J]. Acta Metall., 1967, 15: 351
doi: 10.1016/0001-6160(67)90211-8
|
50 |
Budrov Z, Van Swygenhoven H, Derlet P M, et al. Plastic deformation with reversible peak broadening in nanocrystalline nickel [J]. Science, 2004, 304: 273
pmid: 15073373
|
51 |
Yamakov V, Wolf D, Phillpot S R, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J]. Nat. Mater., 2004, 3: 43
pmid: 14704784
|
52 |
Van Swygenhoven H, Derlet P M, Frøseth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater., 2004, 3: 399
pmid: 15156199
|
53 |
Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
|
54 |
Kelly A, Nicholson R B. Strengthening Methods in Crystals [M]. Amsterdam: Elsevier, 1971: 1
|
55 |
Luan B F, Wu G H, Hansen N, et al. High strength Al2O3p/6061 Al composites: Effect of particles, subgrains and precipitates [J]. Mater. Sci. Technol., 2007, 23: 233
doi: 10.1179/174328407X154365
|
56 |
Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
|
57 |
Shanmugasundaram T, Murty B S, Sarma V S. Development of ultrafine grained high strength Al-Cu alloy by cryorolling [J]. Scr. Mater., 2006, 54: 2013
doi: 10.1016/j.scriptamat.2006.03.012
|
58 |
Cheng S, Zhao Y H, Zhu Y T, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Mater., 2007, 55: 5822
doi: 10.1016/j.actamat.2007.06.043
|
59 |
Takata N, Ohtake Y, Kita K, et al. Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates [J]. Scr. Mater., 2009, 60: 590
doi: 10.1016/j.scriptamat.2008.12.018
|
60 |
Hu C M, Lai C M, Du X H, et al. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process [J]. Scr. Mater., 2008, 59: 1163
doi: 10.1016/j.scriptamat.2008.06.040
|
61 |
Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
|
62 |
Kim W J, Sa Y K. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears [J]. Scr. Mater., 2006, 54: 1391
doi: 10.1016/j.scriptamat.2005.11.066
|
63 |
Hassan S F, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement [J]. Metall. Mater. Trans., 2005, 36A: 2253
|
64 |
Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
doi: 10.1016/j.scriptamat.2005.02.016
|
65 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
66 |
Zhao Y H. In situ thermomechanical processing to avoid grain boundary precipitation and strength-ductility loss of age hardening alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1205
doi: 10.1016/S1003-6326(21)65572-3
|
67 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
68 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
69 |
Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals [J]. Acta Mater., 2008, 56: 1126
doi: 10.1016/j.actamat.2007.11.020
|
70 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
71 |
Cheng S, Zhao Y H, Wang Y M, et al. Structure modulation driven by cyclic deformation in nanocrystalline NiFe [J]. Phys. Rev. Lett., 2010, 104: 255501
doi: 10.1103/PhysRevLett.104.255501
|
72 |
Gu L, Liang N N, Chen Y Y, et al. Achieving maximum strength-ductility combination in fine-grained Cu-Zn alloy via detwinning and twinning deformation mechanisms [J]. J. Alloys Compd., 2022, 906: 164401
doi: 10.1016/j.jallcom.2022.164401
|
73 |
Shi S J, Dai L J, Zhao Y H. Ternary relation among stacking fault energy, grain size and twin nucleation size in nanocrystalline and ultrafine grained CuAl alloys [J]. J. Alloys Compd., 2022, 896: 162953
doi: 10.1016/j.jallcom.2021.162953
|
74 |
Jiang W, Gao X Z, Cao Y, et al. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures [J]. Mater. Sci. Eng., 2022, A837: 142735
|
75 |
Gao X Z, Dai L J, Zhao Y H. Twin boundary-dislocation interactions in nanocrystalline Cu-30% Zn alloys prepared by high pressure torsion [J]. J. Mater. Res. Technol., 2020, 9: 11958
doi: 10.1016/j.jmrt.2020.08.060
|
76 |
Li Y S, Dai L J, Cao Y, et al. Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy [J]. J. Mater. Res., 2019, 34: 2398
doi: 10.1557/jmr.2019.194
|
77 |
Gao X Z, Lu Y P, Liu J Z, et al. Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning [J]. Materialia, 2019, 8: 100485
doi: 10.1016/j.mtla.2019.100485
|
78 |
Jiang W, Gao X Z, Guo Y Z, et al. Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy [J]. Mater. Sci. Eng., 2021, A824: 141858
|
79 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
80 |
Andrews P V, West M B, Robeson C R. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium [J]. Philos. Mag., 1969, 19: 887
|
81 |
Callister W D. Materials Science and Engineering: An Introduction [M]. 7th Ed., New York: John Wiley & Sons, Inc., 2007: 674
|
82 |
Zhao Y H, Bingert J F, Liao X Z, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper [J]. Adv. Mater., 2006, 18: 2949
doi: 10.1002/adma.200601472
|
83 |
Whang S H. Nanostructured Metals and Alloys [M]. Oxford: Woodhead Publishing, 2011: 375
|
84 |
Legros M, Elliott B R, Rittner M N, et al. Microsample tensile testing of nanocrystalline metals [J]. Philos. Mag., 2000, 80A: 1017
|
85 |
Tellkamp V L, Lavernia E J, Melmed A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy [J]. Metall. Mater. Trans., 2001, 32A: 2335
|
86 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
87 |
Zhao Y H, Topping T, Bingert J F, et al. High tensile ductility and strength in bulk nanostructured nickel [J]. Adv. Mater., 2008, 20: 3028
doi: 10.1002/adma.200800214
|
88 |
Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
doi: 10.1016/j.cossms.2011.04.002
|
89 |
Cheng S, Choo H, Zhao Y H, et al. High ductility of ultrafine-grained steel via phase transformation [J]. J. Mater. Res., 2008, 23: 1578
doi: 10.1557/JMR.2008.0213
|
90 |
Wang Y M, Ott R T, Hamza A V, et al. Achieving large uniform tensile ductility in nanocrystalline metals [J]. Phys. Rev. Lett., 2010, 105: 215502
doi: 10.1103/PhysRevLett.105.215502
|
91 |
Zhao Y H, Zhu Y T, Liao X Z, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy [J]. Appl. Phys. Lett., 2006, 89: 121906
doi: 10.1063/1.2356310
|
92 |
Zhao Y H, Bingert J F, Topping T D, et al. Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing [J]. Mater. Sci. Eng., 2020, A772: 138706
|
93 |
Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J]. Appl. Phys. Lett., 2008, 92: 081903
|
94 |
Meng A, Chen X, Nie J F, et al. Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging [J]. J. Alloys Compd., 2021, 859: 158222
doi: 10.1016/j.jallcom.2020.158222
|
95 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
96 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
|
97 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
98 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
99 |
Zhang Y S, Zhao Y H, Zhang W, et al. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity [J]. Sci. Rep., 2017, 7: 40039
doi: 10.1038/srep40039
pmid: 28059150
|
100 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
101 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
102 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
103 |
Wang Y M, Ma E, Valiev R Z, et al. Tough nanostructured metals at cryogenic temperatures [J]. Adv. Mater., 2004, 16: 328
doi: 10.1002/adma.200305679
|
104 |
Wang Y M, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta Mater., 2004, 52: 1699
doi: 10.1016/j.actamat.2003.12.022
|
105 |
Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum [J]. Acta Mater., 2005, 53: 4019
doi: 10.1016/j.actamat.2005.05.005
|
106 |
Jia D, Wang Y M, Ramesh K T, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium [J]. Appl. Phys. Lett., 2001, 79: 611
doi: 10.1063/1.1384000
|
107 |
Stolyarov V V, Valiev R Z, Zhu Y T. Enhanced low-temperature impact toughness of nanostructured Ti [J]. Appl. Phys. Lett., 2006, 88: 041905
|
108 |
Cheng S, Zhao Y H, Guo Y Z, et al. High plasticity and substantial deformation in nanocrystalline NiFe alloys under dynamic loading [J]. Adv. Mater., 2009, 21: 5001
doi: 10.1002/adma.200901991
pmid: 25378188
|
109 |
Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu [J]. Scr. Mater., 2008, 59: 627
doi: 10.1016/j.scriptamat.2008.05.031
|
110 |
Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves [J]. Mater. Sci. Eng., 2009, A525: 68
|
111 |
Zhao Y H, Gu Y L, Guo Y Z. Plasticity and deformation mechanisms of ultrafine-grained Ti in necking region revealed by digital image correlation technique [J]. Nanomaterials, 2021, 11: 574
doi: 10.3390/nano11030574
|
112 |
Zhao Y H, Gu Y L. Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique [J]. Nanotechnol. Rev., 2021, 10: 73
doi: 10.1515/ntrev-2021-0007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|