Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1385-1398    DOI: 10.11900/0412.1961.2022.00191
  综述 本期目录 | 过刊浏览 |
纳米金属结构材料的韧化
赵永好(), 毛庆忠
南京理工大学 材料科学与工程学院 纳米异构材料中心 南京 210094
Toughening of Nanostructured Metals
ZHAO Yonghao(), MAO Qingzhong
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing Universityof Science and Technology, Nanjing 210094, China
引用本文:

赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
Yonghao ZHAO, Qingzhong MAO. Toughening of Nanostructured Metals[J]. Acta Metall Sin, 2022, 58(11): 1385-1398.

全文: PDF(3792 KB)   HTML
摘要: 

金属结构材料因其独特性能(高强韧、耐高温等)在航空、航天、航海、军工、核电、化工、建筑和桥梁等领域具有广泛的工业应用。当前金属结构材料面临着挑战和发展机遇,而我国金属结构材料行业亦面临发展优势和不足。纳米金属结构材料因其高强度而在有节能减重要求的领域(如交通运输)具有工业应用前景,但其低的断裂延伸率限制了工业应用。纳米金属低的拉伸塑性是由其低的应变硬化率导致,而低的应变硬化率进一步由纳米金属过小的晶粒尺寸难以积累位错所致。经过20多年的研究,纳米金属低的断裂延伸率可通过纳米析出、孪晶界、多尺度晶粒分布、孪生、相变、降低位错密度、纳米梯度结构、异构等组织调控得以改善,这些韧化方案提高了纳米金属位错积累能力和应变硬化率,并最终提高了韧性。纳米金属结构材料的拉伸性能除了与其微观结构密切相关,还与变形温度、应变速率、拉伸样品尺寸及加载应力状态相关。

关键词 纳米金属结构材料强度断裂延伸率应变硬化韧化    
Abstract

Metallic structural materials have a wide range of industrial applications (including in the aviation, aerospace, navigation, military industry, nuclear power, chemical industry, construction, and bridge-building fields) due to their unique properties (such as heat resistance and high strength and toughness). At present, there are development opportunities for metallic structural materials, but these materials are also facing challenges due to the gradual substitution of carbon fiber composites and the increasing shortage of metal mineral resources. China's metallic structural material industry is facing development roadblocks and opportunities. Nanostructured metals and alloys have a wide range of potential industrial applications in the field of aviation, aerospace, navigation, military industry with requirements for energy conservation and weight reduction due to their high strength, but their low fracture elongation is a major limitation. The low ductility of nanostructured metals is caused by their low strain hardening rate; the strain hardening rate is caused by the difficulty of dislocation accumulation. This is because the small grain size limits dislocation propagation and reaction. After more than 20 years of research, the low ductility of nanostructured metals has been improved by tailoring the metal microstructures, such as by introducing nano-precipitation, twin boundaries, multi-scale grain distribution, twinning, or phase transformation, nano-gradient structure, and heterogeneous structure, or by lowering dislocation density, etc. These toughening schemes improve the dislocation accumulation capacity and strain hardening rate of nanostructured metals, and ultimately improve their toughness. The tensile properties of nanostructured metals are closely related to their microstructures and deformation temperature, strain rate, tensile sample size, and loading state.

Key wordsnanostructured metal    strength    ductility    strain hardening    toughening
收稿日期: 2022-04-24     
ZTFLH:  TG113  
基金资助:国家重点研发计划项目(2021YFA1200203);国家自然科学基金项目(51971112);中央高校基本科研业务费专项资金项目(30919011405)
作者简介: 赵永好,男,1971年生,教授,博士
图1  金属、陶瓷和有机高分子材料的断裂韧性-强度对比[1]
图2  美国波音787客机所用复合材料和金属结构材料的比例
图3  金属强度和位错密度的关系
图4  陶瓷、金属和有机高分子材料拉伸曲线示意图以及静态韧性与强度、断裂延伸率、加工硬化率的关系
图5  粗晶铜和退火纳米、超细晶铜的拉伸曲线[48]
图6  析出相半径对屈服强度的影响
图7  粗晶(CG)固溶、液氮轧制(NS)、低温时效(NS + P) 7075铝合金的拉伸曲线,拉伸后析出相附近的位错积累,及拉伸前的纳米析出相[56]
图8  等径角挤压(ECAP)和随后液氮拉拔、轧制(ECAP + D + R)超细晶Cu的拉伸曲线,液氮变形引入的纳米形变孪晶,及孪晶界和位错的反应[82]
图9  高纯、致密bi-modal和multi-modal镍的微观结构和拉伸曲线以及屈服强度-断裂延伸率对比[87]
图10  超细晶高锰钢的拉伸曲线和X-射线衍射谱[89]
图11  滚压技术制备纳米梯度结构Cu[95]
图12  纳米梯度不锈钢的拉伸曲线、应变硬化曲线及复杂应力状态[96]
图13  超细晶Cu拉伸样品厚度(T)和长度(L)对拉伸曲线和变形机理的影响[109]
1 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
2 Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
3 Suryanarayana C, Koch C C. Nanocrystalline materials-current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
4 Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci., 2006, 51: 881
doi: 10.1016/j.pmatsci.2006.02.003
5 Lin Y J, Wen H M, Li Y, et al. Erratum to: Stress-induced grain growth in an ultra-fine grained Al alloy [J]. Metall. Mater. Trans., 2014, 45B: 1948
6 Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
doi: 10.1016/S0079-6425(99)00007-9
7 Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
8 Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
9 Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
doi: 10.1016/j.actamat.2007.09.020
10 Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
11 Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
12 Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
13 Mao Q Z, Liu Y F, Zhao Y H. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging [J]. J. Alloys Compd., 2022, 896: 163122
doi: 10.1016/j.jallcom.2021.163122
14 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
15 Koch C C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J]. Scr. Mater., 2003, 49: 657
doi: 10.1016/S1359-6462(03)00394-4
16 Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
17 Koch C C, Youssef K M, Scattergood R O, et al. Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys [J]. Adv. Eng. Mater., 2005, 7: 787
doi: 10.1002/adem.200500094
18 Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
19 Koch C C. Structural nanocrystalline materials: An overview [J]. J. Mater. Sci., 2007, 42: 1403
doi: 10.1007/s10853-006-0609-3
20 Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
doi: 10.1002/adem.200900335
21 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
22 Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys [J]. Mater. Sci. Eng., 2010, A527: 3572
23 Atwater M A, Scattergood R O, Koch C C. The stabilization of nanocrystalline copper by zirconium [J]. Mater. Sci. Eng., 2013, A559: 250
24 Fu H L, Zhou X, Xue H T, et al. Breaking the purity-stability dilemma in pure Cu with grain boundary relaxation [J]. Mater. Today, 2022, 55: 66
doi: 10.1016/j.mattod.2022.03.002
25 Chauhan M, Mohamed F A. Investigation of low temperature thermal stability in bulk nanocrystalline Ni [J]. Mater. Sci. Eng., 2006, A427: 7
26 Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
doi: 10.1016/j.matdes.2013.02.083
27 Liang N N, Liu J Z, Lin S C, et al. A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability [J]. J. Alloys Compd., 2018, 735: 1389
doi: 10.1016/j.jallcom.2017.11.309
28 Liang N N, Zhao Y H, Li Y, et al. Influence of microstructure on thermal stability of ultrafine-grained Cu processed by equal channel angular pressing [J]. J. Mater. Sci., 2018, 53: 13173
doi: 10.1007/s10853-018-2548-1
29 Tang L L, Zhao Y H, Islamgaliev R K, et al. Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2017, 721: 577
doi: 10.1016/j.jallcom.2017.05.164
30 Zhang Y S, Zhang W, Wang X, et al. Microstructure and mechanical property evolutions of bulk core-shell structured Ti-N alloys during annealing [J]. J. Alloys Compd., 2017, 710: 418
doi: 10.1016/j.jallcom.2017.03.254
31 Liang N N, Xu R R, Wu G Z, et al. High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion [J]. Mater. Sci. Eng., 2022, A848: 143399
32 Liu X R, Wei D J, Zhuang L M, et al. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding [J]. Mater. Sci. Eng., 2015, A642: 1
33 Liu X R, Zhuang L M, Zhao Y H. Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing [J]. Materials, 2020, 13: 5171
doi: 10.3390/ma13225171
34 Xu R R, Liang N N, Zhuang L M, et al. Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing [J]. Mater. Sci. Eng., 2022, A832: 142510
35 Wan Y C, Tang B, Gao Y H, et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging [J]. Acta Mater., 2020, 200: 274
doi: 10.1016/j.actamat.2020.09.024
36 Mao Q Z, Zhang Y S, Liu J Z, et al. Breaking material property trade-offs via macrodesign of microstructure [J]. Nano Lett., 2021, 21: 3191
doi: 10.1021/acs.nanolett.1c00451
37 Mao Q Z, Zhang Y S, Guo Y Z, et al. Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire [J]. Commun. Mater., 2021, 2: 46
doi: 10.1038/s43246-021-00150-1
38 Mao Q Z, Chen X, Li J S, et al. Nano-gradient materials prepared by rotary swaging [J]. Nanomaterials, 2021, 11: 2223
doi: 10.3390/nano11092223
39 Yang Y, Chen X, Nie J F, et al. Achieving ultra-strong magnesium-lithium alloys by low-strain rotary swaging [J]. Mater. Res. Lett., 2021, 9: 255
doi: 10.1080/21663831.2021.1891150
40 Mao Q Z, Wang L, Nie J F, et al. Enhancing strength and electrical conductivity of Cu-Cr composite wire by two-stage rotary swaging and aging treatments [J]. Composites, 2022, 231B: 109567
41 Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 +TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
42 Nie J F, Liu M X, Wang F, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties [J]. Materials, 2016, 9: 951
doi: 10.3390/ma9110951
43 Yang Y, Nie J F, Mao Q Z, et al. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation [J]. Results Phys., 2019, 13: 102236
doi: 10.1016/j.rinp.2019.102236
44 Lu F H, Nie J F, Ma X, et al. Simultaneously improving the tensile strength and ductility of the AlNp/Al composites by the particle's hierarchical structure with bimodal distribution and nano-network [J]. Mater. Sci. Eng., 2020, A770: 138519
45 Chen X, Liu C M, Wan Y C, et al. Grain refinement mechanisms in gradient nanostructured AZ31B Mg alloy prepared via rotary swaging [J]. Metall. Mater. Trans., 2021, 52A: 4053
46 Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
47 Sanders P G, Youngdahl C J, Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Mater. Sci. Eng., 1997, A234-236: 77
48 Zhao Y H, Topping T, Li Y, et al. Strength and ductility of Bi-modal Cu [J]. Adv. Eng. Mater., 2011, 13: 865
doi: 10.1002/adem.201100019
49 Hart E W. Theory of the tensile test [J]. Acta Metall., 1967, 15: 351
doi: 10.1016/0001-6160(67)90211-8
50 Budrov Z, Van Swygenhoven H, Derlet P M, et al. Plastic deformation with reversible peak broadening in nanocrystalline nickel [J]. Science, 2004, 304: 273
pmid: 15073373
51 Yamakov V, Wolf D, Phillpot S R, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J]. Nat. Mater., 2004, 3: 43
pmid: 14704784
52 Van Swygenhoven H, Derlet P M, Frøseth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater., 2004, 3: 399
pmid: 15156199
53 Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
54 Kelly A, Nicholson R B. Strengthening Methods in Crystals [M]. Amsterdam: Elsevier, 1971: 1
55 Luan B F, Wu G H, Hansen N, et al. High strength Al2O3p/6061 Al composites: Effect of particles, subgrains and precipitates [J]. Mater. Sci. Technol., 2007, 23: 233
doi: 10.1179/174328407X154365
56 Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
57 Shanmugasundaram T, Murty B S, Sarma V S. Development of ultrafine grained high strength Al-Cu alloy by cryorolling [J]. Scr. Mater., 2006, 54: 2013
doi: 10.1016/j.scriptamat.2006.03.012
58 Cheng S, Zhao Y H, Zhu Y T, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Mater., 2007, 55: 5822
doi: 10.1016/j.actamat.2007.06.043
59 Takata N, Ohtake Y, Kita K, et al. Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates [J]. Scr. Mater., 2009, 60: 590
doi: 10.1016/j.scriptamat.2008.12.018
60 Hu C M, Lai C M, Du X H, et al. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process [J]. Scr. Mater., 2008, 59: 1163
doi: 10.1016/j.scriptamat.2008.06.040
61 Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
62 Kim W J, Sa Y K. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears [J]. Scr. Mater., 2006, 54: 1391
doi: 10.1016/j.scriptamat.2005.11.066
63 Hassan S F, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement [J]. Metall. Mater. Trans., 2005, 36A: 2253
64 Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
doi: 10.1016/j.scriptamat.2005.02.016
65 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
66 Zhao Y H. In situ thermomechanical processing to avoid grain boundary precipitation and strength-ductility loss of age hardening alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1205
doi: 10.1016/S1003-6326(21)65572-3
67 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
68 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
69 Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals [J]. Acta Mater., 2008, 56: 1126
doi: 10.1016/j.actamat.2007.11.020
70 You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
71 Cheng S, Zhao Y H, Wang Y M, et al. Structure modulation driven by cyclic deformation in nanocrystalline NiFe [J]. Phys. Rev. Lett., 2010, 104: 255501
doi: 10.1103/PhysRevLett.104.255501
72 Gu L, Liang N N, Chen Y Y, et al. Achieving maximum strength-ductility combination in fine-grained Cu-Zn alloy via detwinning and twinning deformation mechanisms [J]. J. Alloys Compd., 2022, 906: 164401
doi: 10.1016/j.jallcom.2022.164401
73 Shi S J, Dai L J, Zhao Y H. Ternary relation among stacking fault energy, grain size and twin nucleation size in nanocrystalline and ultrafine grained CuAl alloys [J]. J. Alloys Compd., 2022, 896: 162953
doi: 10.1016/j.jallcom.2021.162953
74 Jiang W, Gao X Z, Cao Y, et al. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures [J]. Mater. Sci. Eng., 2022, A837: 142735
75 Gao X Z, Dai L J, Zhao Y H. Twin boundary-dislocation interactions in nanocrystalline Cu-30% Zn alloys prepared by high pressure torsion [J]. J. Mater. Res. Technol., 2020, 9: 11958
doi: 10.1016/j.jmrt.2020.08.060
76 Li Y S, Dai L J, Cao Y, et al. Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy [J]. J. Mater. Res., 2019, 34: 2398
doi: 10.1557/jmr.2019.194
77 Gao X Z, Lu Y P, Liu J Z, et al. Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning [J]. Materialia, 2019, 8: 100485
doi: 10.1016/j.mtla.2019.100485
78 Jiang W, Gao X Z, Guo Y Z, et al. Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy [J]. Mater. Sci. Eng., 2021, A824: 141858
79 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
80 Andrews P V, West M B, Robeson C R. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium [J]. Philos. Mag., 1969, 19: 887
81 Callister W D. Materials Science and Engineering: An Introduction [M]. 7th Ed., New York: John Wiley & Sons, Inc., 2007: 674
82 Zhao Y H, Bingert J F, Liao X Z, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper [J]. Adv. Mater., 2006, 18: 2949
doi: 10.1002/adma.200601472
83 Whang S H. Nanostructured Metals and Alloys [M]. Oxford: Woodhead Publishing, 2011: 375
84 Legros M, Elliott B R, Rittner M N, et al. Microsample tensile testing of nanocrystalline metals [J]. Philos. Mag., 2000, 80A: 1017
85 Tellkamp V L, Lavernia E J, Melmed A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy [J]. Metall. Mater. Trans., 2001, 32A: 2335
86 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
87 Zhao Y H, Topping T, Bingert J F, et al. High tensile ductility and strength in bulk nanostructured nickel [J]. Adv. Mater., 2008, 20: 3028
doi: 10.1002/adma.200800214
88 Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
doi: 10.1016/j.cossms.2011.04.002
89 Cheng S, Choo H, Zhao Y H, et al. High ductility of ultrafine-grained steel via phase transformation [J]. J. Mater. Res., 2008, 23: 1578
doi: 10.1557/JMR.2008.0213
90 Wang Y M, Ott R T, Hamza A V, et al. Achieving large uniform tensile ductility in nanocrystalline metals [J]. Phys. Rev. Lett., 2010, 105: 215502
doi: 10.1103/PhysRevLett.105.215502
91 Zhao Y H, Zhu Y T, Liao X Z, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy [J]. Appl. Phys. Lett., 2006, 89: 121906
doi: 10.1063/1.2356310
92 Zhao Y H, Bingert J F, Topping T D, et al. Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing [J]. Mater. Sci. Eng., 2020, A772: 138706
93 Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J]. Appl. Phys. Lett., 2008, 92: 081903
94 Meng A, Chen X, Nie J F, et al. Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging [J]. J. Alloys Compd., 2021, 859: 158222
doi: 10.1016/j.jallcom.2020.158222
95 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
96 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
97 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
98 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
99 Zhang Y S, Zhao Y H, Zhang W, et al. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity [J]. Sci. Rep., 2017, 7: 40039
doi: 10.1038/srep40039 pmid: 28059150
100 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
101 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
102 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
103 Wang Y M, Ma E, Valiev R Z, et al. Tough nanostructured metals at cryogenic temperatures [J]. Adv. Mater., 2004, 16: 328
doi: 10.1002/adma.200305679
104 Wang Y M, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta Mater., 2004, 52: 1699
doi: 10.1016/j.actamat.2003.12.022
105 Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum [J]. Acta Mater., 2005, 53: 4019
doi: 10.1016/j.actamat.2005.05.005
106 Jia D, Wang Y M, Ramesh K T, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium [J]. Appl. Phys. Lett., 2001, 79: 611
doi: 10.1063/1.1384000
107 Stolyarov V V, Valiev R Z, Zhu Y T. Enhanced low-temperature impact toughness of nanostructured Ti [J]. Appl. Phys. Lett., 2006, 88: 041905
108 Cheng S, Zhao Y H, Guo Y Z, et al. High plasticity and substantial deformation in nanocrystalline NiFe alloys under dynamic loading [J]. Adv. Mater., 2009, 21: 5001
doi: 10.1002/adma.200901991 pmid: 25378188
109 Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu [J]. Scr. Mater., 2008, 59: 627
doi: 10.1016/j.scriptamat.2008.05.031
110 Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves [J]. Mater. Sci. Eng., 2009, A525: 68
111 Zhao Y H, Gu Y L, Guo Y Z. Plasticity and deformation mechanisms of ultrafine-grained Ti in necking region revealed by digital image correlation technique [J]. Nanomaterials, 2021, 11: 574
doi: 10.3390/nano11030574
112 Zhao Y H, Gu Y L. Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique [J]. Nanotechnol. Rev., 2021, 10: 73
doi: 10.1515/ntrev-2021-0007
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[6] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[7] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[10] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[11] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[13] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[14] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[15] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.