|
|
综述:活性元素作用机理——氧化物“钉扎”模型 |
杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚( ) |
清华大学 材料学院 北京 100084 |
|
Review: Mechanism of Reactive Element Effect—Oxide Pegging |
YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang( ) |
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
Liang YANG,
Haotian LV,
Chunlei WAN,
Qianming GONG,
Hao CHEN,
Chi ZHANG,
Zhigang YANG.
Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. Acta Metall Sin, 2021, 57(2): 182-190.
1 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
|
2 |
Li M S, Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
|
2 |
李美栓, 张亚明. 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
|
3 |
Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating [J]. Mater. Rev., 2007, 21(7): 59
|
3 |
宋 鹏, 陆建生, 赵宝禄等. 活性元素影响MCrAlY涂层氧化性能的研究进展 [J]. 材料导报, 2007, 21(7): 59
|
4 |
Cao X Z, He J, Guo H B. Research progress of reactive element effect in alumina-forming alloys [J]. Surf. Technol., 2020, 49(1): 17
|
4 |
曹雪珍, 何 健, 郭洪波. 氧化铝形成合金中活性元素效应的研究进展 [J]. 表面技术, 2020, 49(1): 17
|
5 |
Pfeil L B, Griffiths W T. Improvement in heat-resisting alloys [P]. UK Pat, 459848, 1937
|
6 |
Wang X, Peng X, Tan X, et al. The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations [J]. Sci. Rep., 2016, 6: 29593
|
7 |
Antill J E, Peakall K A. Influence of an alloy addition of yttrium on the oxidation behaviour of an austenitic and a ferritic stainless steel in carbon dioxide [J]. J. Iron Steel Inst., 1967, 205: 1136
|
8 |
Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
|
9 |
McDonald J E, Eberhart J G. Adhesion in aluminum oxide-metal systems [J]. Trans. Metall. Soc. AIME, 1965, 233: 512
|
10 |
Tien J K, Pettit F S. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys [J]. Metall. Trans., 1972, 3: 1587
|
11 |
Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
|
12 |
Lees D G. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the “sulfur effect” [J]. Oxid. Met., 1987, 27: 75
|
13 |
Smeggil J G, Funkenbusch A W, Bornstein N S. A relationship between indigenous impurity elements and protective oxide scale adherence characteristics [J]. Metall. Trans., 1986, 17A: 923
|
14 |
Mrowec S. Transport of gaseous species in growing oxide scales [J]. Oxid. Met., 1985, 23: 266
|
15 |
Stott F H, Wood G C. Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings [J]. Mater. Sci. Eng., 1987, 87: 267
|
16 |
Stott F H. The protective action of oxide scales in gaseous environments at high temperature [J]. Rep. Prog. Phys., 1987, 50: 861
|
17 |
Stringer J. The reactive element effect in high-temperature corrosion [J]. Mater. Sci. Eng., 1989, A120-121: 129
|
18 |
Strawbridge A, Hou P Y. The role of reactive elements in oxide scale adhesion [J]. Mater. High Temp., 1994, 12: 177
|
19 |
Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion of CeO2 nanoparticles [J]. Corros. Sci., 2011, 53: 1954
|
20 |
Lustman B. The intermittent oxidation of some nickel-chromium base alloys [J]. JOM, 1950, 2(8): 995
|
21 |
Felten E J, Pettit F S. Development, growth, and adhesion of Al2O3 platinum-aluminum alloys [J]. Oxid. Met., 1976, 10: 189
|
22 |
Golightly F A, Stott F H, Wood G C. The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. J. Electrochem. Soc., 1979, 126: 1035
|
23 |
Hindam H M, Smeltzer W W. Growth and microstructure of α-Al2O3 on Ni-Al alloys: Internal precipitation and transition to external scale [J]. J. Electrochem. Soc., 1980, 127: 1622
|
24 |
Hindam H, Whittle D P. High temperature internal oxidation behaviour of dilute Ni-Al alloys [J]. J. Mater. Sci., 1983, 18: 1389
|
25 |
Felten E J. High-temperature oxidation of Fe-Cr base alloys with particular reference to Fe-Cr-Y alloys [J]. J. Electrochem. Soc., 1961, 108: 490
|
26 |
Francis J M, Whitlow W H. The effect of yttrium on the high temperature oxidation resistance of some Fe-Cr base alloys in carbon dioxide [J]. Corros. Sci., 1965, 5: 701
|
27 |
Kvernes I A. The role of yttrium in high-temperature oxidation behavior of Ni-Cr-Al alloys [J]. Oxid. Met., 1973, 6: 45
|
28 |
Price C W, Wright I G, Wallwork G R. Examination of oxide scales in the SEM using backscattered electron images [J]. Metall. Trans., 1973, 4: 2423
|
29 |
Golightly F A, Wood G C, Stott F H. The early stages of development of α-Al2O3 scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys at high temperature [J]. Oxid. Met., 1980, 14: 217
|
30 |
Nowok J. Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY [J]. Oxid. Met., 1982, 18: 1
|
31 |
Amano T. High-temperature oxidation resistance of Al2O3- and Cr2O3-forming heat-resisting alloys with noble metals and rare earths [J]. ESC Trans., 2010, 25: 3
|
32 |
Amano T. High-temperature oxidation of FeCrAl(Y, Pt) alloys in oxygen-water vapour [J]. Mater. High Temp., 2011, 28: 342
|
33 |
Giggins C S, Kear B H, Pettit F S, et al. Factors affecting adhesion of oxide scales on alloys [J]. Metall. Trans., 1974, 5: 1685
|
34 |
Stringer J, Allam I M, Whittle D P. The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions [J]. Thin Solid Films, 1977, 45: 377
|
35 |
Allam I M, Akuezue H C, Whittle D P. Influence of small Pt additions on Al2O3 scale adherence [J]. Oxid. Met., 1980, 14: 517
|
36 |
Amano T, Isobe H, Yamada K, et al. The morphology of alumina scales formed on Fe-20Cr-4Al-S alloys with reactive element (Y, Hf) additions at 1273 K [J]. Mater. High Temp., 2003, 20: 387
|
37 |
He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ'+β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
|
38 |
Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200oC [J]. Corros. Sci., 2013, 66: 125
|
39 |
Kahn A S, Lowell C E, Barrett C A. The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys [J]. J. Electrochem. Soc., 1980, 127: 670
|
40 |
Barrett C A, Khan A S, Lowell C E. The effect of zirconium on the cyclic oxidation of NiCrAl alloys [J]. J. Electrochem. Soc., 1981, 128: 25
|
41 |
Amano T, Yajima S, Saito Y. High-temperature oxidation behavior of Fe-20Cr-4Al alloys with small additions of cerium [J]. Trans. Jpn. Inst. Met., 1979, 20: 431
|
42 |
Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions [J]. Philos. Trans. R. Soc. London, 1980, 295: 309
|
43 |
Whittle D P, Boone D H. Alumina scale adherence to CoCrAl alloys and coating [A] Surfaces and Interfaces in Ceramic and Ceramic—Metal Systems [C]. Boston, MA: Springer, 1981: 487
|
44 |
Pint B A. Progress in understanding the reactive element effect since the Whittle and Stringer literature review [A]. Proceedings of the John Stringer Symposium on High Temperature Corrosion [C]. Ohio: ASM International Materials Park, 2003: 9
|
45 |
Stott F H. Methods of improving adherence [J]. Mater. Sci. Technol., 1988, 4: 431
|
46 |
Delaunay D, Huntz A M. Mechanisms of adherence of alumina scale developed during high-temperature oxidation of Fe-Ni-Cr-Al-Y alloys [J]. J. Mater. Sci., 1982, 17: 2027
|
47 |
Kuenzly J D, Douglass D L. The oxidation mechanism of Ni3Al containing yttrium [J]. Oxid. Met., 1974, 8: 139
|
48 |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
|
49 |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
|
50 |
Xu T, Faulhaber S, Mercer C, et al. Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY [J]. Acta Mater., 2004, 52: 1439
|
51 |
He M Y, Evans A G, Hutchinson J W. Effects of morphology on the decohesion of compressed thin films [J]. Mater. Sci. Eng., 1998, A245: 168
|
52 |
Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
|
53 |
Yang L, Choi R, Zheng Y, et al. Spalling resistance of thermally grown oxide based on NiCoCrAlY(Ti) with different oxide peg sizes [J]. Rare Met., 2020. doi: 10.1007/s12598-019-01339-7
|
54 |
Yang L. Effect of active element Ti and Y co-doping on antioxidant behavior of CoNiCrAl alloy [R]. Beijing: Tsinghua University, 2020
|
54 |
杨 亮. 活性元素Ti和Y共掺杂对CoNiCrAl合金抗氧化行为的影响研究 [R]. 北京: 清华大学, 2020
|
55 |
Whittle D P, Boone D H, Allam I M. Morphology of Al2O3 scales on doped Co-Cr-Al coatings [J]. Thin Solid Films, 1980, 73: 359
|
56 |
Pivin J C, Delaunay D, Roques-Carmes C, et al. Oxidation mechanism of Fe-Ni-20-25Cr-5Al alloys-influence of small amounts of yttrium on oxidation kinetics and oxide adherence [J]. Corros. Sci., 1980, 20: 351
|
57 |
Pendse R, Stringer J. The influence of alloy microstructure on the oxide peg morphologies in a Co-10%Cr-11%Al alloy with and without reactive element additions [J]. Oxid. Met., 1985, 23: 1
|
58 |
Hindam H, Whittle D P. Mechanism of peg growth and influence on scale adhesion [R]. Berkeley: Lawrence Berkeley National Laboratory, 1982
|
59 |
Shaffer S J, Boone D H, Lambertson R T, et al. The effect of deposition and processing variables on the oxide structure of M-Cr-Al coatings [J]. Thin Solid Films, 1983, 107: 463
|
60 |
Allam I M, Whittle D P, Stringer J. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met., 1978, 12: 35
|
61 |
Rapp R A. Kinetics, microstructures and mechanism of internal oxidation—Its effect and prevention in high temperature alloy oxidation [J]. Corrosion, 1965, 21: 382
|
62 |
Whittle D P, El-Dahshan M E, Stringer J. The oxidation behaviour of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros. Sci., 1977, 17: 879
|
63 |
Goncel O T, Stringer J, Whittle D P. The effect of internal stable nitride and oxide dispersion on the high temperature oxidation of Fe-Cr alloys [J]. Corros. Sci., 1978, 18: 701
|
64 |
Seltzer M S, Wilcox B A, Stringer J. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093oC and 1204oC [J]. Metall. Trans., 1972, 3: 2391
|
65 |
Kingsley L M. Al2O3 adherence on CoCrAl alloys [D]. California: University of California, 1980
|
66 |
Seybolt A U. High temperature oxidation of chromium containing Y2O3 [J]. Corros. Sci., 1966, 6: 263
|
67 |
Pint B A. The oxidation behavior of oxide-dispersed β-NiAl: I. Short-term performance at 1200oC [J]. Oxid. Met., 1998, 49: 531
|
68 |
Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed β-NiAl [J]. Oxid. Met., 2004, 61: 273
|
69 |
Allam I M, Whittle D P, Stringer J. Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys [J]. Oxid. Met., 1979, 13: 381
|
70 |
Saito Y, Önay B. Improvements of scale adherence on heat-resisting alloys and coatings by rare earth additions [J]. Surf. Coat. Technol., 1990, 43-44: 336
|
71 |
Stringer J, Wileox B A, Jaffee R I. The high-temperature oxidation of nickel-20wt.% chromium alloys containing dispersed oxide phases [J]. Oxid. Met., 1972, 5: 11
|
72 |
Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxid. Met., 1975, 9: 275
|
73 |
Przybylski K, Garratt-Reed A J, Pint B A, et al. Segregation of Y to grain boundaries in the Al2O3 scale formed on an ODS alloy [J]. J. Electrochem. Soc., 1987, 134: 3207
|
74 |
Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence [J]. Oxid. Met., 1988, 29: 445
|
75 |
Hindam H, Whittle D P. Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions [J]. J. Electrochem. Soc., 1982, 129: 1147
|
76 |
Hindam H, Whittle D P. Microstructure, adhesion and growth kinetics of protective scales on metals and alloys [J]. Oxid. Met., 1982, 18: 245
|
77 |
Mennicke C, He M Y, Clarke D R, et al. The role of secondary oxide inclusions (“pegs”) on the spalling resistance of oxide films [J]. Acta Mater., 2000, 48: 2941
|
78 |
Cao X Z, He J, Chen H, et al. The formation mechanisms of HfO2 located in different positions of oxide scales on Ni-Al Alloys [J]. Corros. Sci., 2020, 167: 108481
|
79 |
Yang L, Zheng Y, Wan C L, et al. Characteristics of oxide pegs in Ti- and Y-doped CoNiCrAl alloys at 1150°C [J]. Rare Met., 2020. doi: 10.1007/s12598-020-01577-0
|
80 |
Hou P Y, Shui Z R, Chuang G Y, et al. Effect of reactive element oxide coatings on the high temperature oxidation behavior of a FeCrAl alloy [J]. J. Electrochem. Soc., 1992, 139: 1119
|
81 |
Collins R A, Muhl S, Dearnaley G. The effect of rare earth impurities on the oxidation of chromium [J]. J. Phys., 1979, 9F: 1245
|
82 |
Przybylski K, Yurek G J. The influence of implanted yttrium on the microstructures of chromia scales formed on a Co-45 weight percent Cr alloy [J]. J. Electrochem. Soc., 1988, 135: 517
|
83 |
Hou P, Chia V, Brown I. Distribution of ion-implanted yttrium in Cr2O3 scales and in the underlying Ni-25wt.%Cr alloy [J]. Surf. Coat. Technol., 1992, 51: 73
|
84 |
Hou P Y, Brown I G, Stringer J. Study of the effect of reactive-element addition by implanting metal ions in a preformed oxide layer [J]. Nucl. Instrum. Methods Phys. Res., 1991, 59-60B: 1345
|
85 |
Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales [J]. Mater. Sci. Eng., 1995, A202: 1
|
86 |
Saito Y, Maruyama T, Amano T. Adherence of oxide scale formed on Ni-20Cr-1Si alloys with small additions of rare earth elements [J]. Mater. Sci. Eng., 1987, 87: 275
|
87 |
Hou P Y. The effect of surface-applied reactive elements on the high temperature oxidation of chromium-containing alloys [D]. California: University of California, 1986
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|