Please wait a minute...
金属学报  2021, Vol. 57 Issue (2): 182-190    DOI: 10.11900/0412.1961.2020.00222
  综述 本期目录 | 过刊浏览 |
综述:活性元素作用机理——氧化物“钉扎”模型
杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚()
清华大学 材料学院 北京 100084
Review: Mechanism of Reactive Element Effect—Oxide Pegging
YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang()
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
引用本文:

杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
Liang YANG, Haotian LV, Chunlei WAN, Qianming GONG, Hao CHEN, Chi ZHANG, Zhigang YANG. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. Acta Metall Sin, 2021, 57(2): 182-190.

全文: PDF(1104 KB)   HTML
摘要: 

高温防护涂层在航空发动机或燃气轮机上有着广泛应用,活性元素在高温防护涂层上得到了大量应用,尤其在降低氧化层生长速率和提高其粘结性方面,但是目前活性元素的微观作用机制还存在较大争议。在提出的几种解释中,氧化物“钉扎”模型往往作为首要的考虑因素,是一个非常重要的模型,但目前依旧存在争议。本文综述了自氧化物“钉扎”现象发现以来该模型的发展,包括模型的提出、氧化物栓与氧化层粘结性的关系、如何提高“钉扎”效果、不同情况下氧化物栓的生成和长大等,并介绍了该模型存在的缺陷。最后对该模型在自身完善方面及该模型和活性元素效应的其他解释模型之间的相互作用机制方面的研究重点进行了展望,力图对氧化物“钉扎”现象及目前的研究方向有一个全面的认识,期望为活性元素效应的研究和热障涂层材料设计提供一定的基础。

关键词 高温氧化活性元素效应氧化物“钉扎”模型    
Abstract

High temperature protective coatings are involved in a wide variety of applications including aero engines and gas turbines. Reactive elements, including all rare-earth elements as well as Ti, Zr, and Hf, are increasingly used to modify high temperature protective coatings, and their main effects are reducing scale growth and improving scale adhesion. The mechanism through which reactive elements work is yet to be clearly understood. The current mechanism comprises “enhanced scale plasticity”, “graded seal mechanism”, “modification to growth process”, “chemical bonding”, “the vacancy sink model”, “oxide pegging”, “dynamic segregation theory”, and “the sulfur effect theory”. Among these, oxide pegging is perhaps the most important one, although some people may disagree. Oxide pegging is the result of the mechanical joining of an oxide to its corresponding alloy; it is a result of either the internal oxidation of added reactive elements or dispersed oxide particles growing in size and extending into the alloy. This paper offers an overview of the research progress on oxide pegging, including its proposed, the relationship between the peg and scale adherence, improving the “key-on” effect, and the peg formation and growth under different conditions (the doped reactive element with a low or high solid solute in the alloy, dispersed oxide added in the alloy, and two reactive elements doped into the alloy). Moreover, it sheds light on the model’s inability to explain the surface application of reactive elements on the alloy. Finally, the paper suggests future studies on this model, like focusing on how to obtain the ideal oxide pegging, developing a new model for oxide peg formation and growth with two or more reactive elements added to the alloy, and the cooperation effect between the oxide pegging and other mechanisms. The paper’s objective is to offer a better understanding of oxide pegging and to provide theoretical support for the studies on the reactive element effect and the design of materials in thermal barrier coating systems.

Key wordshigh temperature oxidation    reactive element effect    oxide pegging
收稿日期: 2020-06-28     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(52001182)
作者简介: 杨 亮,男,1988年生,博士
图1  典型的双层热障涂层结构[1](TGO—thermally grown oxide)
图2  裂纹通过氧化物栓时可能选择的路径(I, II或 III)[53,54]
No.Mass fraction of alloy composition / %Reactive element oxideImprovement of adherenceMechanism proposedRef.
1Co-10Cr-1AlAl2O3YesPegging[65]
2Co-10Cr-11Al-1HfHfO2YesPegging[69]
3Ni-20CrY2O3, CeO2YesChange of growth[71]
4Ni-20CrAl2O3, Y2O3, ThO2YesFine grain size[72]
5Fe-20Cr-4.5Al-0.5TiY2O3Yes

1. Improve scale plasticity

2. Change of growth

[73]

[74]

表1  活性元素氧化物添加提高TGO粘结性的机理[65,69,71~74]
图3  2种活性元素添加的合金中形成氧化物栓示意图[79]
No.Mass fraction of alloy composition / %Surface applied oxideImprovement of adherenceMechanism proposedRef.
1Ni-20Cr-1SiCeO2YesPegging[86]
2Ni-20Cr-3AlCeO2Yes1. Pegging[70]
2. Reduced scale thickness
3Ni-20CrCeO2, Y2O3, La2O3YesChange of growth (?)[70]
4Ni-25CrCeO2, Y2O3, La2O3YesModified growth and early[87]
development of the oxide scale (?)
表2  部分活性元素氧化物的表面应用提高TGO粘结性的机理解释[70,86,87]
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
2 Li M S, Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
2 李美栓, 张亚明. 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
3 Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating [J]. Mater. Rev., 2007, 21(7): 59
3 宋 鹏, 陆建生, 赵宝禄等. 活性元素影响MCrAlY涂层氧化性能的研究进展 [J]. 材料导报, 2007, 21(7): 59
4 Cao X Z, He J, Guo H B. Research progress of reactive element effect in alumina-forming alloys [J]. Surf. Technol., 2020, 49(1): 17
4 曹雪珍, 何 健, 郭洪波. 氧化铝形成合金中活性元素效应的研究进展 [J]. 表面技术, 2020, 49(1): 17
5 Pfeil L B, Griffiths W T. Improvement in heat-resisting alloys [P]. UK Pat, 459848, 1937
6 Wang X, Peng X, Tan X, et al. The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations [J]. Sci. Rep., 2016, 6: 29593
7 Antill J E, Peakall K A. Influence of an alloy addition of yttrium on the oxidation behaviour of an austenitic and a ferritic stainless steel in carbon dioxide [J]. J. Iron Steel Inst., 1967, 205: 1136
8 Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
9 McDonald J E, Eberhart J G. Adhesion in aluminum oxide-metal systems [J]. Trans. Metall. Soc. AIME, 1965, 233: 512
10 Tien J K, Pettit F S. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys [J]. Metall. Trans., 1972, 3: 1587
11 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
12 Lees D G. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the “sulfur effect” [J]. Oxid. Met., 1987, 27: 75
13 Smeggil J G, Funkenbusch A W, Bornstein N S. A relationship between indigenous impurity elements and protective oxide scale adherence characteristics [J]. Metall. Trans., 1986, 17A: 923
14 Mrowec S. Transport of gaseous species in growing oxide scales [J]. Oxid. Met., 1985, 23: 266
15 Stott F H, Wood G C. Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings [J]. Mater. Sci. Eng., 1987, 87: 267
16 Stott F H. The protective action of oxide scales in gaseous environments at high temperature [J]. Rep. Prog. Phys., 1987, 50: 861
17 Stringer J. The reactive element effect in high-temperature corrosion [J]. Mater. Sci. Eng., 1989, A120-121: 129
18 Strawbridge A, Hou P Y. The role of reactive elements in oxide scale adhesion [J]. Mater. High Temp., 1994, 12: 177
19 Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion of CeO2 nanoparticles [J]. Corros. Sci., 2011, 53: 1954
20 Lustman B. The intermittent oxidation of some nickel-chromium base alloys [J]. JOM, 1950, 2(8): 995
21 Felten E J, Pettit F S. Development, growth, and adhesion of Al2O3 platinum-aluminum alloys [J]. Oxid. Met., 1976, 10: 189
22 Golightly F A, Stott F H, Wood G C. The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. J. Electrochem. Soc., 1979, 126: 1035
23 Hindam H M, Smeltzer W W. Growth and microstructure of α-Al2O3 on Ni-Al alloys: Internal precipitation and transition to external scale [J]. J. Electrochem. Soc., 1980, 127: 1622
24 Hindam H, Whittle D P. High temperature internal oxidation behaviour of dilute Ni-Al alloys [J]. J. Mater. Sci., 1983, 18: 1389
25 Felten E J. High-temperature oxidation of Fe-Cr base alloys with particular reference to Fe-Cr-Y alloys [J]. J. Electrochem. Soc., 1961, 108: 490
26 Francis J M, Whitlow W H. The effect of yttrium on the high temperature oxidation resistance of some Fe-Cr base alloys in carbon dioxide [J]. Corros. Sci., 1965, 5: 701
27 Kvernes I A. The role of yttrium in high-temperature oxidation behavior of Ni-Cr-Al alloys [J]. Oxid. Met., 1973, 6: 45
28 Price C W, Wright I G, Wallwork G R. Examination of oxide scales in the SEM using backscattered electron images [J]. Metall. Trans., 1973, 4: 2423
29 Golightly F A, Wood G C, Stott F H. The early stages of development of α-Al2O3 scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys at high temperature [J]. Oxid. Met., 1980, 14: 217
30 Nowok J. Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY [J]. Oxid. Met., 1982, 18: 1
31 Amano T. High-temperature oxidation resistance of Al2O3- and Cr2O3-forming heat-resisting alloys with noble metals and rare earths [J]. ESC Trans., 2010, 25: 3
32 Amano T. High-temperature oxidation of FeCrAl(Y, Pt) alloys in oxygen-water vapour [J]. Mater. High Temp., 2011, 28: 342
33 Giggins C S, Kear B H, Pettit F S, et al. Factors affecting adhesion of oxide scales on alloys [J]. Metall. Trans., 1974, 5: 1685
34 Stringer J, Allam I M, Whittle D P. The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions [J]. Thin Solid Films, 1977, 45: 377
35 Allam I M, Akuezue H C, Whittle D P. Influence of small Pt additions on Al2O3 scale adherence [J]. Oxid. Met., 1980, 14: 517
36 Amano T, Isobe H, Yamada K, et al. The morphology of alumina scales formed on Fe-20Cr-4Al-S alloys with reactive element (Y, Hf) additions at 1273 K [J]. Mater. High Temp., 2003, 20: 387
37 He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ'+β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
38 Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200oC [J]. Corros. Sci., 2013, 66: 125
39 Kahn A S, Lowell C E, Barrett C A. The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys [J]. J. Electrochem. Soc., 1980, 127: 670
40 Barrett C A, Khan A S, Lowell C E. The effect of zirconium on the cyclic oxidation of NiCrAl alloys [J]. J. Electrochem. Soc., 1981, 128: 25
41 Amano T, Yajima S, Saito Y. High-temperature oxidation behavior of Fe-20Cr-4Al alloys with small additions of cerium [J]. Trans. Jpn. Inst. Met., 1979, 20: 431
42 Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions [J]. Philos. Trans. R. Soc. London, 1980, 295: 309
43 Whittle D P, Boone D H. Alumina scale adherence to CoCrAl alloys and coating [A] Surfaces and Interfaces in Ceramic and Ceramic—Metal Systems [C]. Boston, MA: Springer, 1981: 487
44 Pint B A. Progress in understanding the reactive element effect since the Whittle and Stringer literature review [A]. Proceedings of the John Stringer Symposium on High Temperature Corrosion [C]. Ohio: ASM International Materials Park, 2003: 9
45 Stott F H. Methods of improving adherence [J]. Mater. Sci. Technol., 1988, 4: 431
46 Delaunay D, Huntz A M. Mechanisms of adherence of alumina scale developed during high-temperature oxidation of Fe-Ni-Cr-Al-Y alloys [J]. J. Mater. Sci., 1982, 17: 2027
47 Kuenzly J D, Douglass D L. The oxidation mechanism of Ni3Al containing yttrium [J]. Oxid. Met., 1974, 8: 139
48 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
49 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
50 Xu T, Faulhaber S, Mercer C, et al. Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY [J]. Acta Mater., 2004, 52: 1439
51 He M Y, Evans A G, Hutchinson J W. Effects of morphology on the decohesion of compressed thin films [J]. Mater. Sci. Eng., 1998, A245: 168
52 Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
53 Yang L, Choi R, Zheng Y, et al. Spalling resistance of thermally grown oxide based on NiCoCrAlY(Ti) with different oxide peg sizes [J]. Rare Met., 2020. doi: 10.1007/s12598-019-01339-7
54 Yang L. Effect of active element Ti and Y co-doping on antioxidant behavior of CoNiCrAl alloy [R]. Beijing: Tsinghua University, 2020
54 杨 亮. 活性元素Ti和Y共掺杂对CoNiCrAl合金抗氧化行为的影响研究 [R]. 北京: 清华大学, 2020
55 Whittle D P, Boone D H, Allam I M. Morphology of Al2O3 scales on doped Co-Cr-Al coatings [J]. Thin Solid Films, 1980, 73: 359
56 Pivin J C, Delaunay D, Roques-Carmes C, et al. Oxidation mechanism of Fe-Ni-20-25Cr-5Al alloys-influence of small amounts of yttrium on oxidation kinetics and oxide adherence [J]. Corros. Sci., 1980, 20: 351
57 Pendse R, Stringer J. The influence of alloy microstructure on the oxide peg morphologies in a Co-10%Cr-11%Al alloy with and without reactive element additions [J]. Oxid. Met., 1985, 23: 1
58 Hindam H, Whittle D P. Mechanism of peg growth and influence on scale adhesion [R]. Berkeley: Lawrence Berkeley National Laboratory, 1982
59 Shaffer S J, Boone D H, Lambertson R T, et al. The effect of deposition and processing variables on the oxide structure of M-Cr-Al coatings [J]. Thin Solid Films, 1983, 107: 463
60 Allam I M, Whittle D P, Stringer J. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met., 1978, 12: 35
61 Rapp R A. Kinetics, microstructures and mechanism of internal oxidation—Its effect and prevention in high temperature alloy oxidation [J]. Corrosion, 1965, 21: 382
62 Whittle D P, El-Dahshan M E, Stringer J. The oxidation behaviour of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros. Sci., 1977, 17: 879
63 Goncel O T, Stringer J, Whittle D P. The effect of internal stable nitride and oxide dispersion on the high temperature oxidation of Fe-Cr alloys [J]. Corros. Sci., 1978, 18: 701
64 Seltzer M S, Wilcox B A, Stringer J. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093oC and 1204oC [J]. Metall. Trans., 1972, 3: 2391
65 Kingsley L M. Al2O3 adherence on CoCrAl alloys [D]. California: University of California, 1980
66 Seybolt A U. High temperature oxidation of chromium containing Y2O3 [J]. Corros. Sci., 1966, 6: 263
67 Pint B A. The oxidation behavior of oxide-dispersed β-NiAl: I. Short-term performance at 1200oC [J]. Oxid. Met., 1998, 49: 531
68 Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed β-NiAl [J]. Oxid. Met., 2004, 61: 273
69 Allam I M, Whittle D P, Stringer J. Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys [J]. Oxid. Met., 1979, 13: 381
70 Saito Y, Önay B. Improvements of scale adherence on heat-resisting alloys and coatings by rare earth additions [J]. Surf. Coat. Technol., 1990, 43-44: 336
71 Stringer J, Wileox B A, Jaffee R I. The high-temperature oxidation of nickel-20wt.% chromium alloys containing dispersed oxide phases [J]. Oxid. Met., 1972, 5: 11
72 Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxid. Met., 1975, 9: 275
73 Przybylski K, Garratt-Reed A J, Pint B A, et al. Segregation of Y to grain boundaries in the Al2O3 scale formed on an ODS alloy [J]. J. Electrochem. Soc., 1987, 134: 3207
74 Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence [J]. Oxid. Met., 1988, 29: 445
75 Hindam H, Whittle D P. Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions [J]. J. Electrochem. Soc., 1982, 129: 1147
76 Hindam H, Whittle D P. Microstructure, adhesion and growth kinetics of protective scales on metals and alloys [J]. Oxid. Met., 1982, 18: 245
77 Mennicke C, He M Y, Clarke D R, et al. The role of secondary oxide inclusions (“pegs”) on the spalling resistance of oxide films [J]. Acta Mater., 2000, 48: 2941
78 Cao X Z, He J, Chen H, et al. The formation mechanisms of HfO2 located in different positions of oxide scales on Ni-Al Alloys [J]. Corros. Sci., 2020, 167: 108481
79 Yang L, Zheng Y, Wan C L, et al. Characteristics of oxide pegs in Ti- and Y-doped CoNiCrAl alloys at 1150°C [J]. Rare Met., 2020. doi: 10.1007/s12598-020-01577-0
80 Hou P Y, Shui Z R, Chuang G Y, et al. Effect of reactive element oxide coatings on the high temperature oxidation behavior of a FeCrAl alloy [J]. J. Electrochem. Soc., 1992, 139: 1119
81 Collins R A, Muhl S, Dearnaley G. The effect of rare earth impurities on the oxidation of chromium [J]. J. Phys., 1979, 9F: 1245
82 Przybylski K, Yurek G J. The influence of implanted yttrium on the microstructures of chromia scales formed on a Co-45 weight percent Cr alloy [J]. J. Electrochem. Soc., 1988, 135: 517
83 Hou P, Chia V, Brown I. Distribution of ion-implanted yttrium in Cr2O3 scales and in the underlying Ni-25wt.%Cr alloy [J]. Surf. Coat. Technol., 1992, 51: 73
84 Hou P Y, Brown I G, Stringer J. Study of the effect of reactive-element addition by implanting metal ions in a preformed oxide layer [J]. Nucl. Instrum. Methods Phys. Res., 1991, 59-60B: 1345
85 Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales [J]. Mater. Sci. Eng., 1995, A202: 1
86 Saito Y, Maruyama T, Amano T. Adherence of oxide scale formed on Ni-20Cr-1Si alloys with small additions of rare earth elements [J]. Mater. Sci. Eng., 1987, 87: 275
87 Hou P Y. The effect of surface-applied reactive elements on the high temperature oxidation of chromium-containing alloys [D]. California: University of California, 1986
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[4] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[5] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[6] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[7] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[8] 曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
[9] 骆蕾,沈以赴,李博, 胡伟叶. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49(8): 996-1002.
[10] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[11] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[12] 邱军 赵文金 Thomas Guilbert Jean-Luc Bechade. 3种锆合金的高温氧化行为[J]. 金属学报, 2011, 47(9): 1216-1220.
[13] 宋鹏 陆建生 张德丰 吕建国 李德江. La和Hf对CoNiCrAl合金涂层高温氧化行为的影响[J]. 金属学报, 2011, 47(6): 655-662.
[14] 徐朝政 姜肃猛 马军 宫骏 孙超. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为[J]. 金属学报, 2009, 45(8): 964-970.
[15] 彭新 姜肃猛 段绪海 宫骏 孙超. (MCrAlY+AlSiY)复合涂层的高温氧化行为[J]. 金属学报, 2009, 45(3): 378-384.